Drift-Velocity Closure Relationships for Slug Two-Phase High-Viscosity Oil Flow in Pipes

Author:

Jeyachandra B.C.. C.1,Gokcal B..1,Al-Sarkhi A..2,Sarica C..1,Sharma A.K.. K.1

Affiliation:

1. University of Tulsa

2. King Fahd University of Petroleum & Minerals

Abstract

Summary The drift velocity of a gas bubble penetrating into a stagnant liquid is investigated experimentally in this paper. It is part of the translational slug velocity. The existing equations for the drift velocity are either developed by using the results of Benjamin (1968) analysis assuming inviscid fluid flow or correlated using air/water data. Effects of surface tension and viscosity usually are neglected. However, the drift velocity is expected to be affected by high oil viscosity. In this study, the work of Gokcal et al. (2009) has been extended for different pipe diameters and viscosity range. The effects of high oil viscosity and pipe diameter on drift velocity for horizontal and upward-inclined pipes are investigated. The experiments are performed on a flow loop with a test section with 50.8-, 76.2-, and 152.4-mm inside diameter (ID) for inclination angles of 0 to 90°. Water and viscous oil are used as test fluids. New correlation for drift velocity in horizontal pipes of different diameters and liquid viscosities is developed on the basis of experimental data. A new drift-velocity model/approach are proposed for high oil viscosity, valid for inclined pipes inclined from horizontal to vertical. The proposed comprehensive closure relationships are expected to improve the performance of two-phase-flow models for high-viscosity oils in the slug flow regime.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3