On the Influence of Viscosity on ESP Performance

Author:

Amaral Gilmar1,Estevam Valdir1,Franca Fernando A.2

Affiliation:

1. Petrobras

2. the State University of Campinas

Abstract

Summary This paper presents experimental data and a preliminary analysis of the influence of fluid viscosity on centrifugal-pump performance. Two centrifugal pumps, a conventional radial (specific speed Nq=8 rev/min) and a semi axial electrical submersible pump (ESP) (Nq=28 rev/min) were tested with 1-cp water and clear glycerin. Adjusting and controlling the fluid temperature in a closed test loop, it was possible to vary the glycerin viscosity from 67 to 1,020 cp within the range of light and heavy crude oils. The main purpose of these tests, in addition to appraising the influence of viscosity on the pump's overall performance through the measurement of the derating factors for head, flow, and power, was to supply detailed information on the energy-transfer processes taking place in the pump's internal components. To accomplish this, the pressure distribution along the flow path from the pump inlet eye to the discharge section, including detailed pressure difference across impellers and diffusers, was measured. Thus, in addition to measuring the flow rate, the overall pressure difference, the speed, the power and the mean operation temperature for fluids with various viscosities within a full range of operational conditions, detailed data on the energy-transfer processes performed by impellers and diffusers were also taken. Later analyses indicated that, in addition to the physical dimensions, operational conditions, and fluid properties, the pump performance is set by the strong flow interactions that exist between impellers and diffusers. In other words, these succeeding internal blade rows influence each other in terms of the head gain and the viscous dissipation effects. Thus, any generalizing approach dealing with the influence of viscosity on the pump performance must account for those interactions to give a proper measure of the derating factors over an extended range of operational conditions. Unfortunately, this is not true for the procedures available in the open literature. They lack representation and do not deliver proper correction factors for pumps that are not similar to those that generate the correlation database or for pumps working under operational conditions other than at the best-efficiency point (BEP). The data presented herein can be a launching point for a deeper analysis aimed to tackle these limitations.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Energy Engineering and Power Technology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3