Methods Improve Stimulation Efficiency of Perforation Clusters in Completions

Author:

Ingram Stephen R.1,Lahman Matthew1,Persac Stephen1

Affiliation:

1. Halliburton

Abstract

Technology Update Horizontal shale wells present the challenge of generating large, high-density fracture networks, reflecting the submicrodarcy permeability of the formations drilled by these wells. The goal is to create the largest fracture network volume to maximize ultimate recovery, because the fracture network volume in these wells has been shown to correlate strongly with the production level. However, as the network becomes too large for a given wellbore access point, the relative benefit of size diminishes. This is because of the low fracture conductivity, which creates large pressure drops within the network and makes it difficult to drain distant portions. And the effect is exacerbated by the inability to move water or liquid hydrocarbon through a large complex network (Mayerhofer et al. 2006). Thus, it is very important to create an optimal number of conductive transverse fractures or access points that intersect the wellbore. Today’s unconventional wells incorporate wellbore planning and completion designs that are based on the reservoir-specific characteristics needed for optimal drainage and field development. The key elements of the design and planning process must be carefully considered. They are well spacing, lateral length, the number of stages, the length of isolated stages, and the number of perforation clusters per stage. The strategies used are based in part on advancements in reservoir simulation, reservoir modeling, and production correlations from trial and error that stem from the initial work in various plays, except the relatively unique Barnett shale. Progress in Shale Completion Designs A good example of this progression toward more reservoir-specific completion designs was seen in the Haynesville shale. The play saw a rapid rampup in activity from 2009 to 2012 with peak completion activity occurring in mid-2011. By November 2011, it had reached its highest production level of 7.2 Bcf/D (EIA 2014). This dramatic rise in production was in part due to the optimization of completion and stimulation designs, particularly the reduction of the isolated length of each stage (plug-to-plug distance) and, thus, an increase in the number of stages per foot of lateral. The average daily gross perforated interval per stage (top perforation to bottom perforation) that Halliburton completed in the Haynesville and Bossier shales from 2010 to 2013 was analyzed. The data encompasses nearly 11,000 stages for more than 30 operators. It illustrates that many operators began to reduce their gross perforated interval per stage across the play by the middle of 2011. In July 2011, it was 272 ft and by mid-2012, it declined to 150 ft, falling at a relatively constant rate as operators increasingly went to a shorter isolated stage interval. This indicates closer stage spacing (plug to plug) or more stages per well, with lateral length remaining relatively constant. These trends continued into 2012 and a dramatic improvement was seen not only in the slope of the projected production decline curve, but also in the estimated ultimate recovery (EUR) for the wells being brought online.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Strategy and Management,Energy Engineering and Power Technology,Industrial relations,Fuel Technology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3