Best Practices of Exploration: Integration of Seismic and Electrical Prospecting

Author:

Vorobev Vladimir1,Safarov Ildar1,Mostovoy Pavel2,Shakirzyanov Lenar1,Fagereva Veronika2

Affiliation:

1. Gazpromneft-GEO, LLC

2. Gazpromneft Science & Technology Centre, LLC

Abstract

Abstract Eastern Siberia is characterized by the extremely complex geological structure. The main factors include multiple faults, trappean and salt tectonics, the complex structure of the upper part of the section (0–1200 m) and its high-velocity characteristic (5000–6000 m/s), the high degree of rock transformation by secondary processes, low formation temperatures (10–30°C), the mixed fluid composition (gas, oil and water), and low net thicknesses (5–7 m) of productive layers. The fields of the region are among the most complex ones in the world according to the BP Company's statistics. New seismic and geologic model based on complex analyses of core, well logs, well tests, seismic and electromagnetic data allowed the Gazpromneft-GEO company to drill a series of successful wells. Gazpromneft-GEO, LLC.holds three oil and gas exploration and production licenses within the Ignyalinsky, Vakunaisky and Tympuchikansky (Chona field) subsurface blocks (Russia, Eastern Siberia, Irkutsk Region and Republic of Sakha (Yakutia)). The area of the blocks is 6,855 sq.km, 3,050 sq.km of which are covered by the 3D seismic and high-density electric prospecting (Fig. 1). 70 exploration wells were drilled. The geological oil reserves of the Chona field are about 500 Mt. Nonetheless, the level of study of the blocks is extremely irregular, despite such significant reserves. To transfer from the exploration stage to production the capital-intensive scope of exploration is required, which expands the exploration program in time and can influence the final economic profitability of the project. The optimization of drilling costs by minimization of drilling wells and the efficiency of their drilling is the key purpose of the project. The work was carried out within the frames of scientific research and field works at the Gazpromneft-GEO, LLC. fields in Eastern Siberia. The high-density full-azimuth ground-based seismic using the UniQ technology was performed in Russia for the first time. The electric exploration with the near-field time-domain electromagnetic method was carried out along the same lines for the first time in Russia as well. This allowed to form the high-density cube of geoelectric properties. Model based on the wells (Facies model, Petrophysics model) and field geophysical data (3D seismic survey, 3D electric exploration, gravimetric survey, magnetic survey) complexation was made. The use of the approach allows to reduce the number of wells required for exploration of fields by 40%.

Publisher

SPE

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3