Feasibility Evaluation of Warm Solvent Assisted Gravity Drainage Process in Low-Carbon Developing Super-Heavy Oil or Oil Sands Project

Author:

Liang Guangyue1,Xie Qian1,Liu Yang1,Liu Shangqi1,Xia Zhaohui1,Bao Yu1,Zhou Jiuning1

Affiliation:

1. Research Institute of Petroleum Exploration and Development, CNPC

Abstract

Abstract It is very difficult to realize good economy returns using conventional SAGD process in many oil sands projects due to large CPF investment, massive steam injection, expensive surface diluent adding and increasing carbon emission tax. By contrast, warm solvent assisted gravity drainage process (WSAGD) is a promising low-carbon technology to deal with these SAGD challenges. This paper conducted feasibility evaluation by combined with Nsolv Best pilot analysis and a series of physical simulations. From 2014 to 2017, WSAGD pilot was successfully carried out by injecting butane at 60℃ in Suncor Dover oil sands. Its reservoir geological characteristics, physical properties, development technology policy and production performance were systematically analyzed. Combined with 4D seismic interpretation, RST and observation well data, the size and growth rate of solvent chamber were monitored and analyzed. Considering great uncertainty in numerical simulations influenced by many factors including grid size, solvent diffusion coefficient, interfacial tension and capillary force, a series of experimental tests and physical simulations were conducted. The behavior of viscosity reduction, interfacial tension reduction and microscopic oil displacement related to different solvents were systematically tested including propane, butane, pentane and hexane. Particularly, the performance of SAGD and WSAGD process were evaluated by 2D and 3D visual physical simulations. In Nsolv Best pilot, the target reservoir is low pressure, thin and shallow buried. The oil rate reached 250-300 barrels per day under 300 m horizontal section, and API degree of produced oil was upgraded to 13-16 from original 8. After 3 years of tests, the width of solvent chamber is 40-60m, lateral and vertical 1.56 m and 0.96 m per month, and horizontal conformance is 67%. The experiments results show that viscosity reduction trend will flatten out when the solvent concentration exceeds 10 vol% due to partial asphaltene precipitation. Both sweep efficiency and displacement efficiency of hot water, steam, gaseous and liquid hexane are increasing with temperature increase. Compared with other medium, sweep efficiency and displacement efficiency of gaseous hexane are higher due to greater dissolving ability and speed in bitumen. Both 2D and 3D experimental results indicate that WSAGD process achieves faster vertical solvent chamber and higher recovery factor than conventional SAGD process. Besides, gaseous pentane has significant upgrading effect considering substantial reduction of asphaltene and resin in the produced oil, which is not available in conventional SAGD process. This paper first systematically compares the mechanisms and performance of warm solvent assisted gravity drainage (WSAGD) process with SAGD process by physical simulations. It presents a promising low-carbon technology to enhance oil recovery, partially upgrade the produced oil and reduce carbon dioxide emissions in developing super-heavy oil or oil sands project.

Publisher

SPE

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3