Investigating Relationship Between Capillary Pressure, Phase Saturation, and Interfacial Area in a Three-Phase Flow Water-Wet System

Author:

Aljaberi Faisal1,Alhosani Abdullah2,Belhaj Hadi1,Blunt Martin J.2

Affiliation:

1. Chemical and Petroleum Engineering Department, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates

2. Deparment of Earth Science and Engineering, Imperial College London, London, United Kingdom

Abstract

Abstract Immiscible fluid displacement in porous media is encountered in many applications, including waterflooding in oil reservoirs, carbon capture and storage, groundwater remediation, and underground hydrogen storage. Displacement is controlled by capillary forces which is typically assumed to be a function of saturation (S), although the relationship is known to be hysteretic, in that the capillary pressure (Pc) is different for displacement where the saturation is increasing or decreasing for the same rock sample. A thermodynamically based theory predicts capillary pressure is a function of both saturation and specific fluid-fluid interfacial area (a). Recent advances in X-ray micro-computed tomography (micro-CT) allow for the saturation, capillary pressure, and the fluid-fluid interfacial area to be measured directly in situ on three-dimensional images of the rock sample and fluids. In this study, we investigated the relationship Pc-S-a in a steady-state experiment conducted on a water-wet Bentheimer sandstone. In our three-phase system water was the most wetting phase, oil was intermediate wet, and gas was the non-wetting phase. We examine the effect of introducing the gas to the water-oil fluid pair and the theory for water-oil and oil-gas fluid pairs. The main findings were as follows. (1) Introducing gas will push the oil to intermediate-sized pores while the oil also forms spreading layers, which results in no oil trapping; hence Pc-S hysteresis is not observed for the water-oil fluid pair compared to two-phase flow. Trapping has a significant effect on hysteresis. (2) The Pc-S-a relationship eliminated hysteresis and produced a unique three-dimensional surface, for both fluid pairs for steady-state conditions.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3