Bridging the Gap: Highly Depleted Reservoir Entry in a Mature HPHT Field

Author:

Cadd Michael1,Stott Susannah1,Graham Robert1,Nowell Ryan1,Schachner Josef1

Affiliation:

1. Shell U.K. Ltd

Abstract

Abstract This case study shows how three highly depleted reservoirs with large negative drilling windows, previously considered un-drillable, were safely entered by combining Managed Pressure Drilling (MPD) and drill-in liner technologies with a novel losses response strategy. The challenge was to bridge the gap between the high pore pressure overburden and the low fracture strength reservoir. The reservoir had been depleted by some 12,000psi since production started, creating a 3,000psi negative drilling window. Conventional strategies to prevent losses were deemed unlikely to succeed, and the focus was instead on how best to respond to the near-inevitable onset of total losses. The gap was bridged using a low static mud weight in combination with high applied surface back pressure to give an Equivalent Mud Weight (EMW) suitable for the high-pressure overburden, whilst allowing immediate reduction in bottom hole pressure in the event of total losses on entry into the weakened reservoir. Endurance testing allowed the MPD equipment to be operated outside of its normal pressure envelope. In the reference case, losses would be managed by reducing Surface Back Pressure (SBP) while continuing to drill ahead. In the low-pressure case, Pressurised Mud Cap Drilling (PMCD) would be used to bullhead the well to a lighter mud while drilling ahead, before restoring returns. A contingency plan was in place for managing elevated gas levels in the returns, which was anticipated following a large reduction of bottom hole pressure across the overburden shales. In the extreme case where high gas levels from the shales prevented bringing returns to surface, cementing would also be carried out in Pressurised Mud Cap mode. A drill-in liner was used because many of the scenarios would not permit safe tripping and Wellbore Strengthening material was included in the mud in an attempt to reduce the severity of the losses. Total losses were seen on two of the three wells, and all three wells were successfully completed. This paper will discuss the technology and techniques used along with the planning and procedures required to enable successful well construction in this challenging environment.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3