Extra-Deep Resistivity Experience in Brazil Geosteering Operations

Author:

Tilsley-Baker Richard1,Antonov Yuriy1,Martakov Sergey1,Maurer Hans-Martin1,Mosin Anton1,Sviridov Mikhail1,Klein Katharine Sandler2,Iversen Marianne2,Barbosa José Eustáquio2,Carneiro Gabriel2

Affiliation:

1. Baker Hughes

2. Statoil Brazil

Abstract

Abstract The relatively recent development of azimuthal resistivity measurements enables proactive geosteering within complex reservoirs. These successful tools are the major contributor to the substantial expansion of horizontal drilling. The tools enable determining the distance (up to 5 m in ideal conditions) and the azimuthal direction to a resistivity boundary. In ideal conditions, the well is inside a high resistivity layer and the shoulder bed is low resistivity, giving geologists warning of approaching adjacent conductive beds. When the tool is in a low resistivity layer, the depth of detection of an adjacent high resistivity layer is much smaller. In these situations, it is often not possible to use the tool for effective geosteering. An extra-deep resistivity tool has been used for several years in Norway and has been introduced in the Peregrino Field in Brazil. It operates at lower frequencies, has large transmitter-receiver spacings and a depth of detection up to 25 m. This tool was deployed in addition to the conventional directional resistivity instrument. The new application in Brazil was supported by inversion software (still in development) to enable possible interpretation of the geology within the tool range. The inversion results provide information that can help identify adjacent reservoir layers while in the target zone and measure the thickness of the reservoir layer being drilled. Examples are presented from one well where the extra-deep resistivity provided early warnings and additional information that helped to steer the well successfully and maximize reservoir coverage. The extra-deep measurements from the tool also provide valuable reservoir understanding and knowledge for future well planning purposes.

Publisher

SPE

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3