Quantitative Evaluation of Numerical Diffusion (Truncation Error)

Author:

Lantz R.B.1

Affiliation:

1. Esso Production Research Co.

Abstract

Abstract Numerical diffusion (truncation error) can limit the usefulness of numerical finite-difference approximations to solve partial differential equations. Many reservoir simulation users are aware of these limitations but are not as familiar with actually quantifying the magnitude of the truncation error. This paper illustrates that, over a wide range of block size and time step, the truncation error expressions for convective-diffusion partial differential equations are quantitative. Since miscible, thermal, and immiscible processes can be of the convective-diffusion equation form, the truncation error expressions presented can provide guidelines for choosing block size-time step combinations that minimize the effect of numerical diffusion. Introduction Truncation error limits the use of numerical finite-difference approximations to solve partial differential equations. In the solution of convection-diffusion equations, such as occur in miscible displacement and thermal transport, truncation error results in an artificial dispersion term often denoted as numerical diffusion. The differential equations describing two-phase fluid flow can also be rearranged into a convection-diffusion form. And, in fact, miscible and immiscible differential equations have been shown to be completely analogous. In this form, it is easy to infer that numerical diffusion will result in an additional term resembling flow due to capillarity. Many users of numerical programs, and probably all numerical analysts, recognize that the magnitude of the numerical diffusivity for convection-diffusion equations can depend on both block size and time step. Most expressions developed in the literature have been used primarily to determine the order of the error rather than to quantify it. The primary purpose of this paper is to give the user more than just a qualitative feel for the importance of truncation error. In this paper, insofar as possible, analytical expressions for truncation error are compared by experiment to computed values for the numerical diffusivity. Consequently, the reservoir simulator user can observe that these expressions are quantitative and can use them as guidelines for choosing block sizes and time steps that keep the numerical diffusivity small. DEVELOPMENT OF EXPRESSIONS FOR TRUNCATION ERROR APPLICATION TO CONVECTION-DIFFUSION EQUATION To illustrate the method of quantifying numerical diffusivity, consider a convective-diffusion equation of the form: ..............(1) Symbols are defined in the Nomenclature. The first term on the right-hand side represents the diffusion, and the second term represents convection. Such an equation describes the flow of either a two-component miscible mixture or heat in one dimension with constant diffusivity. EXPLICIT DIFFERENCE FORMS An explicit expression for the truncation error (the space derivatives are approximated at a known time level) can be developed by examining the Taylor's series expansion representing first- and second-order derivatives. For the time derivative: .....(2) SPEJ P. 315

Publisher

Society of Petroleum Engineers (SPE)

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3