K-Values-Based Upscaling of Compositional Simulation

Author:

Salehi Amir1,Voskov Denis V.2,Tchelepi Hamdi A.3

Affiliation:

1. Quantum Reservoir Impact and Stanford University

2. Delft University of Technology

3. Stanford University

Abstract

Summary Enhanced-oil-recovery (EOR) processes involve complex flow, transport, and thermodynamic interactions; as a result, compositional simulation is necessary for accurate representation of the physics. Flow simulation of compositional systems with high-resolution reservoir models is computationally intensive because of the large number of unknowns and the strong nonlinear interactions. Thus, there is a great need for upscaling methods of compositional processes. The complex multiscale interactions between the phase behavior and the heterogeneities lie at the core of the difficulty in constructing consistent upscaling procedures. We use a mass-conservative formulation and introduce upscaled phase-molar-mobility functions for coarse-scale modeling of multiphase flow. These upscaled flow functions account for the subgrid effects caused by the absolute permeability and relative permeability variations, as well as the effects of compressibility. Upscaling of the phase behavior is performed as follows. We assume that instantaneous thermodynamic equilibrium is valid on the fine scale, and we derive coarse-scale equations in which the phase behavior may not necessarily be at equilibrium. The upscaled thermodynamic functions, which represent differences in the component fugacities, are used to account for the nonequilibrium effects on the coarse scale. We demonstrate that the upscaled phase-behavior functions transform the equilibrium phase space on the fine scale to a region of similar shape, but with tilted tie-lines on the coarse space. The numerical framework uses K-values that depend on the orientation of the tie-lines in the new nonequilibrium phase space and the sign of upscaled thermodynamic functions. The proposed methodology is applied to challenging gas-injection problems with large numbers of components and highly heterogeneous permeability fields. The K-value-based coarse-scale operator produces results that are in good agreement with the fine-scale solutions for the quantities of interest, including the component overall compositions and saturation distributions.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3