Augmenting Deep Residual Surrogates with Fourier Neural Operators for Rapid Two-Phase Flow and Transport Simulations

Author:

Alpak Faruk O.1ORCID,Vamaraju Janaki2ORCID,Jennings James W.2ORCID,Pawar Suraj2ORCID,Devarakota Pandu2ORCID,Hohl Detlef2ORCID

Affiliation:

1. Shell International Exploration and Production Inc. (Corresponding author)

2. Shell International Exploration and Production Inc.

Abstract

Summary Accurate numerical modeling of multiphase flow and transport mechanisms is essential to study varied, complex physical phenomena including flow in subsurface oil and gas reservoirs and subsurface aquifers subject to CO2 sequestration. State-of-the-art complete physics-based solvers suffer from many computational challenges. High-fidelity data-driven surrogate models that solve the governing partial differential equations (PDEs) have the potential to optimize the time to solution and increase confidence in critical business and engineering decisions through better quantification of solution statistics. We leverage the recently proposed Fourier neural operators (FNOs) with quasilinear time complexity to capture the spectral information from feature maps to solve the coupled porous flow and transport PDEs. Embedding Fourier layers within the residual blocks results in a highly effective structure that, while achieving competitive accuracy, also enables efficient training of deeper networks with a dramatically reduced number of trainable parameters. The resulting novel deep-learning (DL) architecture is coined as FResNet++. FResNet++ uses squeeze and excitation blocks, atrous spatial pyramid pooling (ASPP), and attention blocks to increase its sensitivity to the relevant features and capture multiscale information, and it is specifically tuned to operate optimally to learn from and predict numerically simulated flow (pressure and saturation) fields. We demonstrate the ability of FResNet++ to generalize over multiple high-dimensional input parameter spaces that describe subsurface permeability and porosity heterogeneity. The resulting DL architecture accurately captures the complex interplay between viscous forces and highly heterogeneous permeability and porosity fields. We investigate two-phase flow in porous media, which is the archetypal problem for reservoir simulation giving rise to a system of nonlinearly coupled PDEs with highly heterogeneous coefficients. We show in blind tests that FResNet++ predicts saturation fields more accurately compared to ResU-Net and original FNO with fully connected linear layers. We additionally investigate the effects of using alternative loss functions and an alternative way of utilizing FResNet++ to increase its effectiveness. For the first time in the literature, we show that the spatiotemporal evolution of pressure and saturation fields can be jointly predicted with good accuracy using a single FResNet++ network over long time horizons in response to previously unseen permeability and porosity fields. After a moderate training investment on graphics processing units (GPUs), FResNet++ yields a speedup of at least four orders of magnitude compared to a conventional numerical PDE solver and operates with notably fewer trainable parameters compared to the original FNO. Our numerical experiments validate that FNOs can be utilized in various convolutional neural network-based architectures and can effectively substitute for repetitive physics-based forward simulations for scenario testing.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Efficient subsurface carbon storage modeling with Fourier neural operator;Third International Meeting for Applied Geoscience & Energy Expanded Abstracts;2023-12-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3