A Practical Guide to Interpreting Microseismic Measurements

Author:

Cipolla C..1,Maxwell S..1,Mack M..1,Downie R..1

Affiliation:

1. Schlumberger

Abstract

AbstractThousands of hydraulic fracture treatments have been monitored in the past ten years using microseismic mapping, providing a wealth of measurements that show a surprising degree of diversity in event patterns. Interpreting the microseismic data to determine the geometry and complexity of hydraulic fractures continues to be focused on visualization of the event patterns and qualitative estimates of the "stimulated volume", which has led to wide variations and inconsistencies in interpretations. Comparing the energy input during a hydraulic fracture treatment and resultant energy released by microseismic events demonstrates that the seismic deformation is a very small portion of the total deformation. The vast majority of the energy is consumed in aseismic deformation (tensile opening) and fluid friction (Maxwell et al. 2008). Proper interpretation of microseismic measurements should account for both seismic and aseismic deformation, coupling the geomechanics of fracture opening and propagation with the shear failures that generate microseisms.Interpretation of microseismic measurements begins with an evaluation of location uncertainty, using signal-to-noise ratios and error ellipsoids, along with event moment magnitude. In some cases, microseismic event location uncertainty is erroneously interpreted as fracture complexity. The next step is to normalize the data and correct for observation well bias, both distance and azimuth, including use of seismic radiation patterns. Without these corrections fracture behavior from well to well or stage to stage (especially in horizontal wells) can easily be misinterpreted. Advanced geophysical processing that describes the failure mechanisms in more detail may also aid in the interpretation. The final step in the interpretation is to include the geomechanics of the overall process, accounting for the fracture treatment volumes injected, the net pressure in the hydraulic fracture(s) and the shear failures that generated the microseisms. This final, critical step is often overlooked when interpreting microseismic measurements. The paper provides a comprehensive, yet practical guide to the interpretation of microseismic measurements.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3