A Systematic Approach to Evaluate the Sanding Potential Caused by Formation Shear Failure in Unconsolidated Oil and Gas Reservoirs

Author:

Baptista Bryan1,Fair Christopher1

Affiliation:

1. Oilfield Data Services, Inc.

Abstract

Abstract This article will address two issues related to sand production in unconsolidated reservoirs. First, it will examine the relationship between formation compressibility (Cf), elasto-plastic hysteresis and the shear failure of the formation macroscopically (when the fluid and formation pressure together cannot support the overburden stress), as well as the methodology to predict this failure pressure. Second, it will explore the means to recognize which formations are more friable and likely to produce sand grains – microscopic shear failure. The two effects are only tangentially related but can occur simultaneously. Logs and petrophysical data should be methodolically used to qualitatively and quantitatively assess the sanding potential of a well or reservoir. The first method is evaluating the compressibility of formation rocks as they first demonstrate elasto-plasticity, then have catastrophic shear failure. The other method evaluates the sanding potential based on the friability of the formation. The most effective way to manage/mitigate catastrophic/macroscopic shear failure is to observe the dynamic behavior of the reservoir. By plotting the build-up permeability vs. skin-less FBHP, the failure pressure of the formation can be determined. Good operating practices then dictate that the well should not be flowed at pressures below the value plus a safety factor. The approach to managing potential sand grain failure (microscopic shear failure) is to design the completion (frac-pack, gravel pack, etc.) to collect the sand grains in the pack and screens, then perform periodic pump-in stimulation treatments to push the fines away from the screens/pack. Two examples each from the Gulf of Mexico and the Louisiana Gulf Coast will be presented to demonstrate the methodology for both macroscopic and microscopic shear failure. It should be noted that it is important to differentiate the cause of sand production/fines migration as one of the two (macro/micro) causes. This can be determined by tracking the accretion of skin due to fines. If this occurs coincident with a decrease in permeability or mobility thickness, it should be assumed that the cause is macroscopic shear failure. If the permeability remains constant as skin due to fines increases, it is due to microscopic shear failure. Technically, both mechanisms can occur simultaneously, but it is best to approach the issue conservatively and assume that any increase in skin due to fines that occurs with a decrease in mobility thickness is due to macroscopic shear failure. Applying the sanding potential systematically to formation evaluation can improve the completion design; predicting the macroscopic shear failure pressure of the formation contributes to better overall reservoir management.

Publisher

SPE

Reference4 articles.

1. Application of Logging Data in Predicting Sand Production in Oilfield;Dong;Electronic Journal of Geotechnical Engineering,2013

2. Sharma, O.P. and Arya, O.P. 2006. Formation Strength Estimation from Well Log Data for Sand Cut Analysis in Tapti – Daman Area, Western Offshore Basin, India. 6th International Conference & Exposition on Petroleum Geophysics"Kolkata 2006". https://www.academia.edu/43184601/Formation_Strength_Estimation_From_Well_Log_Data_For_Sand_Cut_Analysis_in_Tapti_Daman_Area_Western_Offshore_Basin_India

3. Modified Approach for Identifying Weak Zones for Effective Sand Management;Sulaimon;Journal of Petroleum Exploration and Production Technology,2020

4. Estimation of Formation Strength from the Mechanical-Properties Log;Tixier;Journal of Petroleum Technology,1975

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3