Hydraulic Fracture Height Estimation in an Unconventional Vertical Well in the Vaca Muerta Formation, Neuquen Basin, Argentina

Author:

Ortiz Alberto César1,Hryb Damián Emmanuel1,Martínez Joaquín Ramirez2,Varela Raúl Alejandro1

Affiliation:

1. YPF

2. Y-TEC

Abstract

Abstract One of the major uncertainties in the analysis of unconventional well productivity is the estimation of the hydraulic fracture height generated during stimulation operations. This study was carried out in a well located in the Neuquen Basin, Argentina with main focus on the development of unconventional shale oil. The strategy consisted in the application of two combined techniques based on different and independent physical principles for the estimation of the hydraulic fracture height. The initial technique consisted in the pumping of proppant which contains elements with great neutron absorption. Thereby, the presence of traced proppant is identified through the differences in the neutron absorption capacity before and after the stimulation at approximately 6 inches from the wellbore. The second technique is based on the characterization of the anisotropy on the shear wave obtained by the dipolar sonic curve in two perpendicular directions. This acquisition should be carried out before and after the stimulation and it is sensitive in the area close to the wellbore. (Between 5 and 40 in) Results from both techniques showed a reasonable good consistency in the results, thus allowing the validation of both methodologies. The results also allowed defining intervals that act as barriers of the hydraulic fracture vertical growth. This permit us the optimization of the fracture design in other wells, thus minimizing the vertical overlapping of the fractures and maximizing the connectivity of the stimulated interval in the well. In addition, traced proppant was confirmed close to the wellbore in several intervals that together represent approximately 60% of the pay which represents a 170 m. To improve completion efficiency, this information can be used to place hydraulic fracture stages and define clusters geometry. Finally, it could be determined that a set of factors allowed the control of the vertical growth of the hydraulic fracture with proppant in the proximity of the wellbore. The main control on hydraulic fracture height was the magnitude of the minimum horizontal stress. The presence of discontinuities in the rocks such as calcite veins volcanoclastic intervals and limestone beds may also play a role. These new data provide confidence on the current geomechanical model helping to optimize the upcoming stimulation operations in the area.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3