Experimental Investigations of Spatial and Temporal Variations in Rock Thermal Properties as Necessary Stage in Thermal EOR

Author:

Popov Yu..1,Chekhonin E..1,Parshin A..1,Law D. H.-S.1,Pissarenko D..1,Miklashevskiy D..1,Popov E..1,Spasennykh M..1,Safonov S..1,Romushkevich R..1,Bayuk I..1,Danilenko A..2,Gerasimov I..2,Ursegov S..2,Konoplev Yu..2,Taraskin E..2

Affiliation:

1. Schlumberger

2. PechorNIPIneft

Abstract

Abstract More than 8,500 measurements of the rock thermal properties – thermal conductivity, thermal diffusivity and volumetric heat capacity – performed on samples of different rock types from 6 terrigenous and carbonaceous heavy oil reservoirs provided the vast experimental data base for 4D reservoir modeling of thermal EOR recovery methods. The experimental results describe the essential spatial variations (more than 100%) in the thermal properties, including thermal rock anisotropy and heterogeneity, within the reservoirs, and significant temporal variations (up to 100% in most cases) in rock thermal properties that are caused by significant changes in reservoir temperature (up to 250 0C) and fluid type (steam, oil and brine) in rock pore space during the heating of reservoirs and oil production. Wide ranges in all thermal properties were determined from the measurements and important information on the correlations between thermal and other petrophysical properties (porosity, elastic wave velocities, etc.) was found. The analyses demonstrate that such spatial-temporal (4D) variations in the thermal properties could not be obtained from the literature data and the existing data base. It was established also that the theoretical modeling of rock thermal properties in modern simulators leads to significant uncertainties in reservoir thermal properties estimation and could result in essential errors in oil production parameters evaluation. The importance of using accurate and representative experimental data on rock thermal properties in simulations of thermal EOR was illustrated by a simplified model of a SAGD process. In the cases simulated, serious influence (up to 50%) from uncertainties in each reservoir thermal properties (the thermal conductivity and volumetric heat capacity) on key outcome parameters – cumulative oil production and steam-to-oil ratio – was observed. Results demonstrated that different thermal properties influence on key production parameters in different ways. It was shown also that reliable data on the thermal properties of both pay zone and surrounding rocks are important for correct estimation of SAGD performance. In particular, the maximum influence of uncertainty in thermal properties of pay zone is established during first years while the influence of uncertainty in thermal properties of surrounding rocks increases with time monotonously. The parametric study showed that production predictions based on empirically derived thermal rock properties may significantly improve simulations and provide field operators with more realistic estimation of the project's economics. The results demonstrate the necessity of detailed experimental investigations of the thermal properties of reservoirs and surrounding rock for the heavy oil field under development to provide necessary reliability of hydrodynamic modeling results.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3