Experimental Evaluation of the Effect of Temperature on the Mechanical Properties of Setting Materials for Well Integrity

Author:

Ogienagbon Adijat1,Khalifeh Mahmoud2

Affiliation:

1. Department of Energy and Petroleum Engineering, University of Stavanger, Norway (Corresponding author)

2. Department of Energy and Petroleum Engineering, University of Stavanger, Norway

Abstract

Summary A fundamental understanding of the mechanical properties of zonal isolation materials is important for predicting well integrity during well operation conditions. Conventionally, the mechanical properties of zonal isolation materials are tested at ambient temperature using uniaxial testing. This study examined the mechanical properties of alternative zonal isolation materials such as rock-based geopolymer, thermosetting resin, and an industrial class expansive cement under realistic well conditions by triaxial testing. Mechanical properties such as Young’s modulus, Poisson’s ratio, cohesive strength, friction angle, and compressive strength of these materials at 30 and 90°C were compared. The effect of confining pressure on the mechanical properties of the materials was also examined. The findings of this study show that all selected materials possess compressive strength at 30 and 90°C and that the compressive strength of all the selected materials is strongly impacted by temperature and confining pressure. The Young’s modulus of all the selected materials was unaffected by confining pressure, while only the Young’s modulus of thermosetting resin was sensitive to temperature. The influence of temperature on the Poisson’s ratio varied from one material to another. In addition, when the test temperature increased, the friction angle of neat Class G and geopolymer decreased.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3