Affiliation:
1. Department of Energy and Petroleum Engineering, University of Stavanger, Norway (Corresponding author)
2. Department of Energy and Petroleum Engineering, University of Stavanger, Norway
Abstract
Summary
A fundamental understanding of the mechanical properties of zonal isolation materials is important for predicting well integrity during well operation conditions. Conventionally, the mechanical properties of zonal isolation materials are tested at ambient temperature using uniaxial testing. This study examined the mechanical properties of alternative zonal isolation materials such as rock-based geopolymer, thermosetting resin, and an industrial class expansive cement under realistic well conditions by triaxial testing. Mechanical properties such as Young’s modulus, Poisson’s ratio, cohesive strength, friction angle, and compressive strength of these materials at 30 and 90°C were compared. The effect of confining pressure on the mechanical properties of the materials was also examined. The findings of this study show that all selected materials possess compressive strength at 30 and 90°C and that the compressive strength of all the selected materials is strongly impacted by temperature and confining pressure. The Young’s modulus of all the selected materials was unaffected by confining pressure, while only the Young’s modulus of thermosetting resin was sensitive to temperature. The influence of temperature on the Poisson’s ratio varied from one material to another. In addition, when the test temperature increased, the friction angle of neat Class G and geopolymer decreased.
Publisher
Society of Petroleum Engineers (SPE)
Subject
Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献