A Review on Fracture-Initiation and -Propagation Pressures for Lost Circulation and Wellbore Strengthening

Author:

Feng Yongcun1,Jones John F.2,Gray K. E.1

Affiliation:

1. University of Texas at Austin

2. Marathon Oil Corporation

Abstract

Summary Fracture-initiation pressure (FIP) and fracture-propagation pressure (FPP) are both important considerations for preventing and mitigating lost circulation. For significant fluid loss to occur, a fracture must initiate on an intact wellbore or reopen on a wellbore with pre-existing fractures, and then propagate into the far-field region. Wellbore-strengthening operations are designed to increase one or both of these two pressures to combat lost circulation. Currently, some theoretical models assume that FIPs and FPPs are only functions of in-situ stress and rock-mechanical properties. However, as demonstrated by numerous field and laboratory observations, they are also highly related to drilling-fluid properties and to interactions between the drilling fluid and formation rock. This paper discusses the mechanisms of lost circulation and wellbore strengthening, with an emphasis on factors that can affect FIP and FPP. These factors include microfractures on the wellbore wall, in-situ-stress anisotropy, pore pressure, fracture toughness, filter-cake development, fracture bridging/plugging, bridge location, fluid leakoff, rock permeability, pore size of rock, mud type, mud solid concentration, and critical capillary pressure. The conclusions of this paper include information seldom considered in lost-circulation studies, such as the effect of microfractures on FIP and the effect of capillary forces on FPP. Research results described in this paper may be useful for lost-circulation mitigation and wellbore-strengthening design, as well as hydraulic-fracturing design and leakoff-test (LOT) interpretation.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Mechanical Engineering,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3