A Novel 2.5D Deep Network Inversion of Gravity Anomalies to Estimate Basement Topography

Author:

Ashena Zahra1ORCID,Kabirzadeh Hojjat2ORCID,Kim Jeong Woo2ORCID,Wang Xin2ORCID,Ali Mohammed3ORCID

Affiliation:

1. University of Calgary (Corresponding author)

2. University of Calgary

3. Khalifa University of Science and Technology

Abstract

Summary A novel 2.5D intelligent gravity inversion technique has been developed to estimate basement topography. A deep neural network (DNN) is used to address the fundamental nonuniqueness and nonlinearity flaws of geophysical inversions. The training data set is simulated by adopting a new technique. Using parallel computing algorithms, thousands of forward models of the subsurface with their corresponding gravity anomalies are simulated in a few minutes. Each forward model randomly selects the values of its parameter from a set of predefined ranges based on the geological and structural characteristics of the target area. A DNN model is trained based on the simulated data set to conduct the nonlinear inverse mapping of gravity anomalies to basement topography in offshore Abu Dhabi, United Arab Emirates. The performance of the trained model is assessed by making predictions on noise-free and noise-contaminated gravity data. Eventually, the DNN inversion model is used to estimate the basement topography using pseudogravity anomalies. The results show the depth of the basement is between 7.4 km and 9.3 km over the Ghasha hydrocarbon reservoir. This paper is the 2.5D and improved version of the research (SPE-211800-MS) recently presented and published in the Abu Dhabi International Petroleum Exhibition & Conference (31 October–3 November 2022) proceedings.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3