Data-Driven Machine Learning Modeling of Mineral/CO2/Brine Wettability Prediction: Implications for CO2 Geo-Storage

Author:

Tariq Zeeshan1,Ali Muhammad1,Yan Bicheng1,Sun Shuyu1,Khan Mohammad2,Yekeen Nurudeen3,Hoteit Hussein1

Affiliation:

1. King Abdullah University of Science and Technology

2. Slb

3. Universiti Teknologi PETRONAS

Abstract

AbstractCO2 wettability and the reservoir rock-fluid interfacial interactions are crucial parameters for successful CO2 geological sequestration. This study implemented the feed-forward neural network to model the wettability behavior in a ternary system of rock minerals (quartz and mica), CO2, and brine under different operating conditions. To gain higher accuracy of the machine learning models, a sufficient dataset was utilized that was recorded by conducting a large number of laboratory experiments under a realistic pressure range, 0 – 25 MPa and the temperatures range, 298 – 343 K. The mica substrates were used as a proxy for the caprock, and quartz substrates were used a proxy for the reservoir rock. Different graphical exploratory data analysis techniques, such as heatmaps, violin plots, and pairplots were used to analyze the experimental dataset. To improve the generalization capabilities of the machine learning models k-fold cross-validation method, and grid search optimization approaches were implemented. The machine learning models were trained to predict the receding and advancing contact angles of mineral/CO2/brine systems. Both statistical evaluation and graphical analyses were performed to show the reliability and performance of the developed models. The results showed that the implemented ML model accurately predicted the wettability behavior under various operating conditions. The training and testing average absolute percent relative errors (AAPE) and R2 of the FFNN model for mica and quartz were 0.981 and 0.972, respectively. The results confirm the accuracy performance of the ML algorithms. Finally, the investigation of feature importance indicated that pressure had the utmost influence on the contact angles of the minerals/CO2/brine system. The geological conditions profoundly affect rock minerals wetting characteristics, thus CO2 geo-storage capacities. The literature severely lacks advanced information and new methods for characterizing the wettability of mineral/CO2/brine systems at geo-storage conditions. Thus, the ML model's outcomes can be beneficial for precisely predicting the CO2 geo-storage capacities and containment security for the feasibility of large-scale geo-sequestration projects.

Publisher

SPE

Reference58 articles.

1. CO2/Basalt's interfacial tension and wettability directly from gas density: Implications for Carbon Geo-sequestration;Abdulelah;J. Pet. Sci. Eng,2021

2. New artificial neural networks model for predicting rate of penetration in deep shale formation. Sustain;Ahmed,2019

3. Scale-Prediction/Inhibition Design Using Machine-Learning Techniques and Probabilistic Approach;Al-Hajri;SPE Prod. Oper,2020

4. Impact of Caprock Type on Geochemical Reactivity and Mineral Trapping Efficiency of CO2, in: Day 1 Mon, November 02, 2020. OTC;Al-Khdheeawi,2020

5. On hydrogen wettability of basaltic rock;Al-Yaseri;J. Pet. Sci. Eng,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3