Improving Hydrocarbon Recovery of Horizontal Shale Wells Through Refracturing

Author:

Malpani Raj1,Sinha Shekhar1,Charry Lina1,Sinosic Brian1,Clark Brian1,Gakhar Kush1

Affiliation:

1. Schlumberger

Abstract

Abstract The learning curve has evolved in the last few years for operators in shale plays. Early wells started with relatively large cluster spacing and small proppant volumes resulting in suboptimal initial completions. Over the years, perforation cluster spacing has declined. Consequently, the number of hydraulic fracturing stages has increased. The total proppant pumped per lateral foot has also increased. The majority of the existing wells were completed with geometrically spaced multiple perforation clusters per stage. Sometimes more than six clusters per stage have been employed. Studies have shown that one-third of these perforation clusters are not productive (Miller et al., 2011). Noncontributing perforation clusters could be due to not initiating hydraulic fractures, insufficient proppant placement, or loss of near-wellbore connection due to over-flushing or severe drawdown. Furthermore, during the development phase, the depletion from parent wells leads to asymmetric hydraulic fracture growth on closely spaced infill wells. Parent wells may also be negatively impacted due to hydraulic fracture interference from new completions. These factors have led to poor hydrocarbon recovery factors, sometimes less than 10% in horizontal shale wells. Recovery factors from existing wells can be improved through restimulation. Candidate selection is a key in achieving economically successful restimulation. Restimulation of appropriate horizontal shale wells resulted in significant production uplifts based on early field results. Designing a fit-for-purpose restimulation treatment is dependent on initial completion, offset well distance, infill plan, and, above all, economics. On top of the design aspect, operationally achieving effective restimulation on long horizontal wells with tens of perforation clusters is a challenging task. Thus real-time monitoring and control is a key for field execution. This work uses an integrated petrophysical, geomechanical, hydraulic fracture, and reservoir modeling workflow and field observations to develop restimulation strategies for improving hydrocarbon recovery. This integrated workflow includes a multistep calibration process to reduce uncertainty. One of the key calibration steps is to model hydraulic fracture growth accounting for local geological heterogeneity and match with observed treatment parameters and microseismic interpretations. Another critical calibration step includes automatic gridding of hydraulic fracture geometry to run numerical reservoir simulation to match realized production results. Reservoir pressure distribution at the end of the production history is used to recalculate stresses for modeling the refracturing scenarios. Multiple practical refracturing scenarios were constructed for addressing near-wellbore connectivity issues and ineffective drainage along the lateral. Creating new surface area in undrained rock and restoring productivity of existing hydraulic fractures resulted in higher recovery. Higher proppant amounts in undrained rock on one well pad or laterals with wider well spacing improved recovery. However, larger jobs can lead to significant interference for closely spaced wells. In conclusion, this paper demonstrates that properly designed restimulation treatments lead to improved recovery.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3