Machine Learning Approach to Classify Water Cut Measurements using DAS Fiber Optic Data

Author:

Alkhalaf Muqbil1,Hveding Frode1,Arsalan Muhmmad1

Affiliation:

1. Saudi Aramco

Abstract

Abstract A crucial part of optimizing well production is accurate flow metering for both onshore and offshore environments. The industry currently relies on test separators and multiphase meters. These methods have limitations in terms of cost, transportation and safety. In this paper, an alternative method to classify water cut measurement in oil wells based on Distributed Acoustic Sensing (DAS) data and machine learning will be discussed. Fiber optics is an effective tool to perform downhole logging, however, the challenge usually resides in the analysis and processing of the logged data. After performing a flowing survey on an oil well a dataset was developed using the logged DAS data in combination with production logging tool (PLT) measurements. After extraction, processing and labeling the raw DAS data, this dataset is used for training supervised machine learning models. In this paper, different classical machine learning models to train this dataset is assessed in terms of accuracy, speed and training/testing segments. The data gathered from the PLT shows a limitation in the variation of water cut percentages between the zones ranging from 71% to 76%. This limits our ability to assess the validity of the model, risk of overfitting, since most points share a similar target value. This is also reflected on the Rayleigh backscatter collected by the laser box where samples from different production zones share a similar value distribution across most frequency ranges. Three different classification machine learning models were selected simple Decision Tree and two ensemble method models—adaptive boost and Random Forest. The ensemble method models offer a parallel and sequential training schemes that increases the variance and reduce the bias in the model. After splitting and shuffling the data, were 10% of the original data was used for training, all models were trained in different percentages of the training set. Multiple metrics were chosen to assess the model's performance including accuracy, F-score and confusion matrices. Random forest classifier appears to be the best choice for this challenge, with a maximum accuracy of 98% and F-score of 0.99. The models show high dependency on low frequencies—lower than 500 Hz—where value distribution across production zones in DAS measurements is comparatively higher. Both ensemble method models are less bias with a maximum feature weight of about 0.1, in contrast, the simple Decision Tree model was highly dependent on a single frequency response. In future work, a more complex and diverse dataset will be collected from wells with a wider range of variances in terms of conditions and types. Moreover, after creating a more robust dataset alternative approaches can be assessed both classical machine learning models—regression and classification—and deep learning.

Publisher

SPE

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3