Multiwell, Multiphase Flowing Material Balance

Author:

Shahamat M. S.1,Clarkson C. R.1

Affiliation:

1. University of Calgary

Abstract

Summary Flowing-material-balance (FMB) analysis is a practical method for determining original hydrocarbon volumes in place. It is attractive because it enables performing material-balance calculations without shutting in wells to obtain estimates of reservoir pressure. However, with some exceptions, its application is limited to single-phase oil and/or gas reservoirs over limited pressure ranges during depletion. In unconventional reservoirs, reservoir and/or production complexities may further restrict FMB use. Among these complexities are significant production/injection of water, production resulting in higher gas/oil ratios (GORs) and pressure drawdowns, geomechanical effects, and multiwell-production effects. As a result, application of the conventional FMB to unconventional reservoirs may lead to significant errors in hydrocarbons-in-place estimation. This paper first discusses the application of conventional FMB to the analysis of single-phase or multiphase flow in single or multiwell scenarios, and then provides a new, comprehensive version of the FMB to address the previously mentioned complications. For the new FMB, pseudopressure is used to account for two-phase oil/gas flow. In addition, by use of a general material-balance equation, water production/injection and multiwell effects are included in the analysis. The new FMB-analysis approach is validated by comparing results with numerical simulation of multifractured horizontal wells (MFHWs). These comparisons demonstrate that, not only gas production, but also water production/injection can have a significant effect on the calculated original-in-place hydrocarbon volumes. The new FMB-analysis approach provided herein successfully accounts for all flowing phases in the reservoir, and is demonstrated to be applicable for multiwell scenarios. The methodology presented in this paper maintains the simplicity of FMB, yet accounts for multiphase flow and multiwell complications. The developed FMB and the presented approach can be used by reservoir engineers to reasonably determine the original volumes of hydrocarbons in place in both conventional and unconventional reservoirs.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3