The Displacement of Viscous Oil by Associative Polymer Solutions

Author:

Buchgraber Markus1,Clemens Torsten2,Castanier Louis Marie3,Kovscek Anthony Robert3

Affiliation:

1. Mining U of Leoben

2. OMV Exploration/Production Ltd

3. Stanford University

Abstract

Abstract About half of world oil production results from waterflooding. The remaining resources, however, are more viscous and less amenable to waterflood as conventional oil reserves are produced. In offshore and Arctic environments improved methods of cold production for viscous oil are needed because the introduction of heat to thin viscous oil appears to be unlikely. Unfavorable mobility ratio and sweep is modified by use of polymer solutions. Of the various EOR polymer formulations, newly developed associative polymers show special promise. We investigate pore and pore network scales because polymer solutions ultimately flow through the pore space of rock to displace oil. We conduct and monitor optically water/oil and polymer solution/oil displacements in a two-dimensional etched-silicon micromodel. The micromodel has the geometrical and topological characteristics of sandstone. Conventional hydrolyzed polyacrylamide solutions and newly developed associative polymer solutions with concentrations ranging from 500 ppm to 2500 ppm were tested. The crude oil had a viscosity of 210 cP at test conditions. Our results provide new insight regarding the ability of polymer to stabilize multiphase flow. At zero and low polymer concentrations, relatively long and wide fingers of injectant developed, leading to early water breakthrough and low recoveries. At increased polymer concentration, a much greater number of relatively fine fingers formed. The width to length ratio of these fingers was quite small and the absolute length of fingers decreased. At a larger scale of observation, the displacement front appears to be stabilized; hence, recovery efficiency improved remarkably. Above a concentration of 1500 ppm, plugging of the micromodel by polymer and lower oil recovery was observed for both polymer types. For tertiary polymer injection that begins at breakthrough of water, the severe fingers resulting from water injection are modified significantly. Fingers become wider and grow in the direction normal to flow as polymer solution replaces water. Apparently, improved sweep efficiency of viscous oils is possible (at this scale of investigation) even after water flooding. The associative and conventional polymer solutions improved oil recovery by about the same amount. The associative polymers, however, showed more stable fronts in comparison to conventional polymer solutions. Introduction Effective polymers for high salinity environments and chemical costs are major concerns when modifying the viscosity characteristics of aqueous injectants for oil recovery. So-called associative polymers have been tested in this study. The term associative polymer is a broad classification (Glass, 2000). Here, we refer to water-soluble associative polymers that have undergone some hydrophobic modification so that they contain both water-soluble (hydrophilic) and water-insoluble components of varying levels of hydrophobicity. Associative polymers possess a unique thickening mechanism and most are environmentally benign. Broadly speaking, polymer networks form in solution and consist of intra- and inter-molecular hydrophobic junctions (Tripathi et al., 2006). These polymers hold the promise of high resistance against salinity and greater in-situ viscosities (Fig.1) in comparison to conventional polymers at similar concentrations. Buckley and Leverett displacement theory (Lake, 1989) assumes that water displaces oil with a piston-like shock followed by a rarefacting water saturation. Viscous fingers, however, are common features of unstable displacements where water is more mobile than oil. In general, viscous fingers refer to the onset and evolution of instabilities that evolve during the displacement of fluids in a porous system. Most often instabilities are linked to mobility differences between phases. Because mobility is inversely related to phase viscosity, viscous structures typically consist of fingers invading into the displaced fluid and propagating through the porous medium and leaving clusters of the displaced fluid behind. Clearly, heterogeneities in rock exacerbate unstable displacement.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3