Data Assimilation of Coupled Fluid Flow and Geomechanics Using the Ensemble Kalman Filter

Author:

Chang Haibin1,Chen Yan2,Zhang Dongxiao3

Affiliation:

1. Peking University

2. Chevron

3. University of Southern California

Abstract

Summary In reservoir history matching or data assimilation, dynamic data, such as production rates and pressures, are used to constrain reservoir models and to update model parameters. As such, even if under certain conceptualization the model parameters do not vary with time, the estimate of such parameters may change with the available observations and, thus, with time. In reality, the production process may lead to changes in both the flow and geomechanics fields, which are dynamically coupled. For example, the variations in the stress/strain field lead to changes in porosity and permeability of the reservoir and, hence, in the flow field. In weak formations, such as the Lost Hills oil field, fluid extraction may cause a large compaction to the reservoir rock and a significant subsidence at the land surface, resulting in huge economic losses and detrimental environmental consequences. The strong nonlinear coupling between reservoir flow and geomechanics poses a challenge to constructing a reliable model for predicting oil recovery in such reservoirs. On the other hand, the subsidence and other geomechanics observations can provide additional insight into the nature of the reservoir rock and help constrain the reservoir model if used wisely. In this study, the ensemble-Kalman-filter (EnKF) approach is used to estimate reservoir flow and material properties by jointly assimilating dynamic flow and geomechanics observations. The resulting model can be used for managing and optimizing production operations and for mitigating the land subsidence. The use of surface displacement observations improves the match to both production and displacement data. Localization is used to facilitate the assimilation of a large amount of data and to mitigate the effect of spurious correlations resulting from small ensembles. Because the stress, strain, and displacement fields are updated together with the material properties in the EnKF, the issue of consistency at the analysis step of the EnKF is investigated. A 3D problem with reservoir fluid-flow and mechanical parameters close to those of the Lost Hills oil field is used to test the applicability.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3