The Impact of Stress on Propped Fracture Conductivity and Gas Recovery in Marcellus Shale

Author:

El sgher Mohamed1,Aminian Kashy1,Ameri Samuel1

Affiliation:

1. West Virginia University

Abstract

Abstract It is commonly observed that the production rates from unconventional reservoirs decline rapidly as compared to conventional reservoirs. The net stress increases with the production because the pore (fluid) pressure decreases while the overburden pressure remains constant. This leads to the fracture compaction and conductivity impairment due to proppant embedment. Even though advances in technology have unlocked considerable reserves of hydrocarbon, the impact of the net stress changes on proppant conductivity, i.e. stress-dependent propped fracture conductivity, is not well understood. The objective of this study is to investigate the impact of the net stress propped fracture conductivity from the horizontal wells with multiple hydraulic fractures completed in Marcellus Shale. A commercial reservoir simulator was used to develop the base model for a Marcellus Shale horizontal well. The model incorporated various storage and production mechanisms inherent in Shales i.e. matrix, natural fracture, and gas adsorption as well as the hydraulic fracture properties (half-length and conductivity). The core, log, completion, stimulation, and production data from wells located at the Marcellus Shale Energy and Environment Laboratory (MSEEL) were utilized to generate the formation and completion properties for the simulation model. MSEEL is a Marcellus Shale dedicated field laboratory and a research collaboration between West Virginia University, Ohio State University, The National Energy Technology Laboratory, and Northeast Natural Energy. Precision laboratory equipment was utilized to determine rock petrophysical properties such as permeability and porosity. Additionally, the natural fracture closure stress values were determined by an innovative experimental technique using core plug samples. The relation between fracture conductivity and the net stress were obtained from published studies (SPE 181867) on core plugs collected from Marcellus shale at two different locations. This relation was incorporated in the model to investigate the geomechanical impact of hydraulic fracture on the gas production. The model was used to perform a number of parametric studies to investigate geomechanical effects for fracture conductivity on gas recovery from Marcellus shale. The production data from two horizontal wells at the MSEEL site, were utilized for production history matching both with and without geomechanical effects. The inclusion of the geomechanical effect in the model improved the predictions particularly at the early stages of the production. Simulation results show geomechanical effects of fracture conductivity on gas production performance for Elimsport and Allenwood samples, which were cut parallel and perpendicular to the bedding planes. Moreover, the results indicate that the geomechanical effects have a significant impact on gas production when the pressure in the vicinity of the well has declined.

Publisher

SPE

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3