A New Method to Reduce Shale Barrier Effect on SAGD Process: Experimental and Numerical Simulation Studies using Laboratory-Scale Model

Author:

Dong Xiaohu1ORCID,Liu Huiqing2ORCID,Tian Yunfei2ORCID,Liu Siyi2ORCID,Li Jiaxin2ORCID,Jiang Liangliang3ORCID,Chen Zhangxin3ORCID

Affiliation:

1. National Key Laboratory of Petroleum Resources and Engineering, China University of Petroleum (Beijing) (Corresponding author)

2. National Key Laboratory of Petroleum Resources and Engineering, China University of Petroleum (Beijing)

3. Department of Chemical and Petroleum Engineering, University of Calgary

Abstract

Summary Shale barrier has been widely reported in many steam-assisted gravity drainage (SAGD) projects. For an SAGD project, the properties and distribution of shale barrier can significantly impede the vertical expansion and lateral spread of steam chamber. Currently, although some literature has discussed the shale barrier effect from different perspectives, a systematic investigation combining the scaled physical and numerical simulations is still lacking. Simultaneously, how to reduce the shale barrier effect is also challenging. In this study, aiming at the Long Lake oilsands resources, combining the methods of 3D experiment and numerical simulation, a new method based on a top horizontal injection well is proposed to reduce the impact of shale barrier on the SAGD process. First, based on a dimensionless scaling criterion of gravity-drainage process, we conducted two 3D gravity-drainage experiments (base case and improved case) to explore the effect of shale barrier and the performance of top injection well on SAGD production. During experiments, to improve the similarity between the laboratory 3D model and the field prototype, a new wellbore model and a physical simulation method of shale barrier are proposed. The location of the shale barrier is placed above the steam injection well, and the top injection well is set above the shale barrier. For an improved case, once the steam chamber front reaches the horizontal edge of the shale barrier, the top injection well can be activated as a steam injection well to replace the previous steam injection well in the SAGD well pair. From the experimental observation, the effect of the top injection well is evaluated. Subsequently, a set of numerical simulation runs are performed to match the experimental measurements. Therefore, from this laboratory-scale simulation model, the effect of shale barrier size is discussed, and the switch time of the top injection well is also optimized to maximize the recovery process. Experimental results indicate that a top injection well-based oil drainage mode can effectively unlock the heavy crude oil above shale barrier and improve the entire SAGD production. Compared with a basic SAGD case, the top injection well can increase the final oil recovery factor by about 8%. Simultaneously, through a mass conservation law, it is calculated that the unlocking angle of remaining oil reserve above the shale barrier is about 6°. The angle can be used to effectively evaluate the recoverable oil reserve after the SAGD process for the heavy oil reservoir with a shale barrier. The simulation results of our laboratory-scale numerical simulation model are in good agreement with the experimental observation. The optimized switch time of the top injection well is the end of the second lateral expansion stage. This paper proposes a new oil drainage mode that can effectively reduce the shale barrier effect on SAGD production and thus improve the recovery performance of heavy oil reservoirs.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

Reference37 articles.

1. SAGD Laboratory Experimental and Numerical Simulation Studies: A Review of Current Status and Future Issues;Al-Bahlani;J Pet Sci Eng,2009

2. A Review of Fluid Displacement Mechanisms in Surfactant-Based Chemical Enhanced Oil Recovery Processes: Analyses of Key Influencing Factors;Bashir;Pet Sci,2022

3. Discussion on the Sweep Efficiency of Hybrid Steam-Chemical Process in Heavy Oil Reservoirs: An Experimental Study;Dong;Pet Sci,2022

4. Applicability Analysis for Single Horizontal Well SAGD in Heavy Oil Reservoir and Optimization of Injection-Production Scheme;Chen;J China Univ Pet (Ed Nat Sci),2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3