Abstract
Summary
A pragmatic method has been developed to efficiently design the production-injection parameters to optimize the water-alternating-gas (WAG) performance in a field-scale CO2-miscible flooding project. The net present value (NPV) is selected as the objective function, while the controlling variables are chosen to be the injection rates, ratios of gas slug size to water slug size (WAG ratio) and cycle time (i.e., the injection time for each gas or water slug) for the injectors and bottomhole pressures (BHPs) for the producers. A hybrid technique, which integrates the orthogonal array (OA) and Tabu technique into the genetic algorithm (GA), is then developed and employed to determine the optimum WAG production-injection parameters. Sensitivity analysis of the WAG parameters on oil recovery is conducted and a field case is finally presented to demonstrate the successful application of the newly developed technique.
Publisher
Society of Petroleum Engineers (SPE)
Subject
Energy Engineering and Power Technology,Fuel Technology,General Chemical Engineering
Cited by
82 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献