The Engineering of Hydraulic Fractures--State of the Art and Technology of the Future

Author:

Cleary Michael P.1

Affiliation:

1. Massachusetts Inst. of Technology

Abstract

Distinguished Author Series articles are general, descriptiverepresentations that summarize the state of the art in an area of technology bydescribing recent developments for readers who are not specialists in thetopics discussed. Written by individuals recognized as experts in the area, these articles provide key references to more definitive work and presentspecific details only to illustrate the technology. Purpose: to informthe general readership of recent advances in various areas of petroleumengineering. Summary. A new age is dawning in the application of computers to preciseengineering design and analysis for the optimization of petroleum fieldoperations, particularly hydraulic fracturing. This progress is based on rapidimprovements in equipment, materials, model analysis, and computer-basedmonitoring of operations in the field, allowing real-time evaluation andimmediate feedback control of each process as it evolves in each unique set offield circumstances. Much has been written about equipment and materials. Thisreview concentrates on the dramatic changes in technology generated by thepower of computer-based analysis and design, based on sound engineering modelsof the process. Such engineering has gradually replaced guesswork, as researchand development have proved their value over the past decade or so. Primaryresults include more realistic fracture treatment designs, better qualitycontrol, and the possibility of largely automatic control for such operationsin the near future. Introduction Because it is a well-established technology for the vital task of improvingproduction from otherwise marginal or uneconomical wells, hydraulic fracturinghas been discussed thoroughly in the petroleum literature. We will referencethis extensive literature to avoid lengthy description of the many facets thatneed discussion in any comprehensive coverage of the topic. In particular, wemake primary reference to previous papers and an SPE monograph now inpreparation that present extensive discussions of most major aspects. Anoverview of the subject is provided in Fig. 1A, which leads to a naturalsequence of the main topics:geology and logging for overall reservoirevaluation,prefracture testing of production to estimate reservoireconomics,design of hydraulic fracturing treatments on the basis of Topics1 and 2,detailed selection of materials, fracture fluids, and proppants,field implementation and quality control of field operations. andpostfracture well testing to evaluate effectiveness/economics of treatment. Acomparison of the forthcoming SPE monograph with the previous hydraulicfracturing monograph, now almost 2 decades old, shows that much progress hasbeen made on some aspects of the process; other aspects, however, especiallythe effective use of computers, are still at a retarded stage relative to otherindustries. Still, one chapter in the new monograph does demonstrate theincreasing role of computers, and this paper will expound on that theme. Thebasis for this increasing confidence in the use of computer-aided analysis anddesign, so common in other engineering areas, has been the result of extensiveefforts by many groups to measure, analyze, and verify by all means possiblethe detailed components of the hydraulic fracturing process. Discussion of allrelevant work cannot be included here, but Refs. 1 and 2 and the upcomingmonograph do provide a reasonable cross section of other references. The workmay be organized according to Fig. 1B, involving a number of categories, broadly grouped as follows:geological descriptions and wireline loginterpretation techniques;reservoir engineering--i.e., the details ofmultiphase flow in porous media;the mechanics of rock deformation andfracturing;the rheological behavior of fracturing fluids and proppant;the conduct of laboratory experiments to check model predictions;theconduct of field experiments to check model predictions; andthedevelopment of equipment and instrumentation for field implementation. Inprinciple, the results of Category 1 should supply enough information for useby models, on the basis of a combination of Categories 2 through 4, to generatepredictions that check out against the results of conclusive experimentsconducted in Categories 5 and 6; after such thorough testing of the engineeringaspects, the technology would be implemented in Category 7. All of this isshown schematically in Fig. 1B, which also shows that the central aspect of themethodology is the availability of good fracture models. JPT P. 13^

Publisher

Society of Petroleum Engineers (SPE)

Subject

Strategy and Management,Energy Engineering and Power Technology,Industrial relations,Fuel Technology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The effects of fluid transport on the creation of a dense cluster of activated fractures in a porous medium;Journal of Fluid Mechanics;2018-05-21

2. Propagation of hydraulically induced fractures—a continuum damage mechanics approach;International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts;1994-06

3. Hydraulic fracture height in cased wells;Geoexploration;1991-10

4. Propagation of fluid-driven fractures in jointed rock. Part 1—development and validation of methods of analysis;International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts;1990-08

5. 7. Bibliography;Developments in Petroleum Science;1989

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3