A Review of Numerical Modelling Techniques for Reactive Transport in Subsurface Reservoirs and Application in Mimetic Finite Difference Discretization Schemes

Author:

Abd Abdul Salam1,Abushaikha Ahmad1

Affiliation:

1. Division of Sustainable Development College of Science and Engineering Hamad Bin Khalifa University

Abstract

Abstract Reactive transport is an area of growing interest to the petroleum industry due to the need to develop efficient simulators for oil production in mature and fractured fields. The subsurface flow processes are highly dependent on the chemical reaction between fluid and rocks, and between fluids themselves. This means that fluid flow in a reservoir should be characterized by mass change and chemical reactions, and thus researchers are trying to account for both phenomena through their corresponding governing equations. In this work, we discuss the early efforts to couple mass transfer and chemical reaction equations through presenting key studies in the field of modelling reactive transport and suggest a new discretization scheme for geochemical reactions. Our main objective is to improve on the formulation and simulation of reactive transport problems and explain how to implement Mimetic Finite-Difference (MFD) discretization scheme in reservoir simulators. The paper outlines the steps to discretize the governing equations of reactive transport, and construct and solve the resultant Jacobian system. The purpose of this work is to provide a clear presentation of the main mathematical and theoretical concepts of reactive transport, and how they can be applied in reservoir simulation framework. Such framework can be utilized in the future to develop a state-of-art reservoir simulator that employs Mimetic Finite Difference schemes in unstructured grids and full tensor permeability structures to solve for fluid flow in porous media, while accounting for the geochemical reactions at the subsurface.

Publisher

SPE

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3