Upscaling of Miscible Floods in Heterogeneous Reservoirs Considering Reservoir Mixing

Author:

Garmeh Gholamreza1,Johns Russell T.2

Affiliation:

1. The University of Texas at Austin

2. Pennsylvania State University

Abstract

Summary Inaccurate modeling of reservoir mixing by using large gridblocks in compositional simulation can affect recoveries significantly in miscible gasfloods and lead to inaccurate predictions of recovery performance. Reservoir mixing or dispersion is caused by diffusion of particles across streamlines; mixing can be enhanced significantly if the surface area of contact between the reservoir and injected fluid is increased as fluids propagate through the reservoir. A common way to convert geological models into simulation models is to upscale permeabilities on the basis of reservoir heterogeneity. Upscaling affects the degree of mixing that is modeled, but the importance of reservoir mixing in upscaling is largely ignored. This paper shows how to estimate the level of mixing in a reservoir and how to incorporate mixing into the upscaling procedure. We derive the key scaling groups for first-contact miscible (FCM) flow and show how they have an impact on reservoir mixing. Heterogeneities are assumed to dominate the flow regime so that gravity effects are negligible. We examine only local mixing, not apparent mixing caused by variations in streamline path lengths (convective spreading). Local mixing is important because it affects the strength of the injected fluid and can cause an otherwise multicontact miscible (MCM) flood to become immiscible. More than 1,000 2D numerical simulations are carried out using experimental design to estimate dispersivity as a function of the derived scaling groups. We show that reservoir mixing is enhanced owing to fluid propagation through heterogeneous media. Because mixing is dependent on heterogeneities, upscaling is an iterative process in which the level of mixing in both the longitudinal and transverse directions must be matched from the fine to the coarse scale. The most important groups that affect mixing are the mobility ratio, dispersion number, correlation lengths, and the Dykstra-Parson coefficient. Large dispersion numbers yield greater dispersivities away from the injection well. We show through simulations of both FCM and MCM floods that gridblock size can be increased significantly when reservoir mixing is large. Heterogeneous reservoirs with large longitudinal correlation lengths can be upscaled to larger gridblocks than reservoirs with random permeability fields. This paper shows how to determine a priori the maximum gridblock size allowed in both the x- and z-directions to predict the oil recovery from miscible gasfloods accurately.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3