Impact of Geomechanics on Microseismicity

Author:

Agarwal Karn1,Mayerhofer Michael J.1,Warpinski Norman R.1

Affiliation:

1. Pinnacle — a Halliburton Service

Abstract

Abstract The proper interpretation of microseismic event patterns to estimate hydraulic-fracture geometries is critical for understanding well performance in unconventional reservoirs. Besides factors such as microseismic event location uncertainty, advanced interpretations should also include a proper understanding of the geomechanical context in which these events take place and the underlying mechanisms that link the hydraulic fracture to the microseismic events. In this paper we investigate the different mechanisms that can cause microseismic activity around a hydraulic fracture from the viewpoint of a 3D elasto-static model to explain the behavior of microseismic event patterns. Stress perturbations caused by the opening of hydraulic fractures, opening of extensional branch fractures, and leakoff-related effects are considered. Multiple transverse fractures as well as dilated natural fractures orthogonal to the hydraulic-fracture direction are modeled under different sets of reservoir and treatment conditions to gain insight into the importance of different mechanisms. An important observation is that stress changes alone caused by tensile opening behind the hydraulic-fracture tip cannot cause microseismic events under any set of reservoir conditions normally encountered in practice. The results indicate that tip effects, propagation of extensional branch fractures, and activation of natural fractures upon intersection should be the main drivers of microseismic activity in shale-gas plays. The modeling shows that microseismic events are expected to occur very close to the hydraulically activated fractures or planes, thus enhancing the value of microseismic monitoring. The modeling also showed that under certain conditions (critically stressed formations), the shear zone caused by tip effects can extend fairly far ahead of the fracture tip, which needs to be considered in the interpretation of fracture geometry. The presented results help to constrain and enhance the interpretation of microseismic data, from a geomechanical perspective.

Publisher

SPE

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Attribute analyses of acoustic emissions in hydraulic fracturing;Interpretation;2021-10-15

2. Evaluating proxies for the drivers of natural gas productivity using machine-learning models;Interpretation;2021-07-12

3. Index;Unconventional Reservoir Geomechanics;2019-05-16

4. Managing the Risk of Injection-Induced Seismicity;Unconventional Reservoir Geomechanics;2019-05-16

5. Production and Depletion;Unconventional Reservoir Geomechanics;2019-05-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3