Pressure-Transient Analysis for Cold-Water Injection into a Reservoir Coupled with Wellbore-Transient-Temperature Effects

Author:

O'Reilly Daniel1,Haghighi Manouchehr2,Flett Matthew3,Sayyafzadeh Mohammad2

Affiliation:

1. University of Adelaide and Chevron Australia Pty. Ltd.

2. University of Adelaide

3. Chevron Australia Pty. Ltd.

Abstract

Summary Presented here is an analytical framework to assess the impact of transient-temperature changes in the wellbore on the pressure-transient response of cold-water injection wells. We focus attention on both drawdown and falloff periods in a well after injection. Historically, these pressure data have been used to calculate reservoir properties concerning flood-efficiency and completion properties (formation permeability/thickness, mechanical skin, and fluid-bank mobilities). One key question addressed in this paper is whether the effects of thermal heating of wellbore fluids during a falloff survey can mask the pressure signature of a two-region composite reservoir. The pressure deflections required to detect mobility changes can be relatively small compared with pressure changes induced by temperature effects in the well. The framework proposed in this paper allows for the numerical evaluation of the contribution of each. Previously, researchers have studied multiple bank-transient-injection problems extensively for the case of reservoir flow and pressure drop, even for nonisothermal problems. The effect of temperature changes in the wellbore and overburden are seldom discussed, however. It is demonstrated in this paper that these effects can, in some cases, be substantial, and it is worthwhile to incorporate them into an interpretation model. The results of this paper are useful for planning and designing a pressure-falloff survey to minimize the adverse effect that heating of wellbore fluid by overburden rock can have on the pressure-transient signature. The theory can also be used to analyze existing data affected by the phenomenon. A real-field case study is shown for a cold-water injector where pressure-falloff data have been affected by temperature changes. The analytical model fits the field data closely when parameters are adjusted within reservoir-property-uncertainty ranges.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Energy Engineering and Power Technology,Fuel Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3