Polymer Systems for Water Shutoff and Profile Modification: A Review Over the Last Decade

Author:

El-Karsani Khalid Saad1,Al-Muntasheri Ghaithan A.2,Hussein Ibnelwaleed A.1

Affiliation:

1. King Fahd University of Petroleum and Minerals

2. Saudi Aramco

Abstract

Summary Unwanted water production is a serious issue in oil- and gas-producing wells. It causes corrosion, scale, and loss of productivity. One method of treating this problem is to chemically reduce unwanted water. This paper discusses the use of polymer systems for this purpose and presents a thorough review of available literature over the last decade. In this paper, field-application data for various polymer systems are summarized over the range of 40 to 150°C (104 to 302°F). These applications cover a wide range of permeabilities from 20 to 2,720 md in sandstone and carbonate reservoirs around the globe. Moreover, the review revealed that the last decade of developments can be categorized into two major types. The first type is polymer gels for total water shutoff in the near-wellbore region, in which a polymer is crosslinked with either an organic or an inorganic crosslinker. The second type is concerned with deep treatment of water-injection wells diverting fluids away from high-permeability zones (thief zones). These thief zones take most of the injected water, which results in a large amount of unrecovered oil. For the total-blocking gels, various systems were identified, such as polyurethane resins, chromium (Cr3+) crosslinking terpolymers, Cr3+ crosslinking foamed partially hydrolyzed polyacrylamide (PHPA), and nanoparticle polyelectrolyte complexes (PECs) sequestering Cr3+ for elongation of its gelation time with PHPA. In addition, polyethylenimine (PEI) was identified to crosslink various polyacrylamide- (PAM-) based polymers. The Petróleos de Venezuela S.A. (PDVSA) Research and Development Center developed a PAM-based thermally stable polymer and an organic crosslinker. The system is applicable for a wide temperature range from 50 to 160°C (130 to 320°F). For the deep modification of water-injection profiles in water-injection wells, two systems were identified: microspheres prepared from PAM monomers crosslinked with N,N′-methylenebisacrylamide and microspheres produced by crosslinking 2-acrylamido-2-methylpropane sulfonic acid (AMPS) with diacrylamides and methacrylamides of diamines (thermally activated microparticles known as Bright Water). This paper highlights all major developments in these areas.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3