Thru-Tubing Conveyed Rigless ESP Technology: A 20-Year Case History of Wireline Retrievable ESPs.

Author:

Patterson John1,Dornan Grant2,Targac Gary3,Malone David4,Cheblak Samer4,Julian Jennifer5,Walker Matthew4

Affiliation:

1. Patterson Consulting

2. ConocoPhillips Alaska

3. ConocoPhillips

4. AccessESP

5. BP Alaska

Abstract

Abstract Electrical submersible pump (ESP) technology is a proven artificial lift method for shallow, low pressure reservoirs like those found in the West Sak viscous oil field in Alaska. However, the unconsolidated nature of the West Sak sands challenges the long-term lifting performance and reliability of conventional ESP systems due to sand production. This challenging environment causes ESP pump erosion and accumulation of sand in the tubing above the pump and in the lower completion below the ESP. This paper presents a 20-year case study of the of the world’s largest, longest-running population of thru-tubing conveyed (rigless) electric submersible pumps. Conventional ESP’s require a rig to replace a pump or motor when either fails. In "rigless" systems, some of the components (pump only for Generation 1, and pump, seal, and motor for Generation 2) can be pulled and replaced using slickline (SL), coiled tubing (CT), or tractor, depending on wellbore deviation. Generation 2 systems consist of a downhole side pocket mandrel (or docking station) with a wet-connect attached to the electric cable and deployed on 4-1/2" or larger tubing. Not only do these systems allow both the pump, seal, and motor to be retrieved without a rig, they have the significant advantage of allowing 3.80" fullbore access below the pump setting depth without pulling tubing. This allows non-rig interventions such as reperforating, production profiles, CT cleanouts, CT drilling etc. to be performed after the pump, seal, and motor are pulled with conventional SL or CT. Once the desired intervention has been completed, the pump, seal, and motor can be redeployed with SL — wet-connecting to the downhole side pocket mandrel. A well with a conventional ESP would require pulling the tubing with a rig prior to and reinstalling the tubing following any well intervention below the pump setting depth. "Rigless" technology has significantly increased production uptime and reduced the cost of ESP interventions in these wells. The case study includes the analysis of the two generations of rigless ESP systems, quantifying the success rate in varying conditions in over 300 rigless ESP replacements in a high sand, high deviation environment on Alaska’s North Slope.

Publisher

SPE

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3