Validation of Continuous Wavelet Transform Closure Detection Technique Using Strain Measurements

Author:

Adel Gabry Mohamed1,Eltaleb Ibrahim1,Soliman M. Y.1,Farouq-Ali S. M.1,Cook Paul. J.2,Soom Florian. A.2,Guglielmi Yves2

Affiliation:

1. The University of Houston

2. Lawrence Berkeley National Laboratory

Abstract

AbstractAlthough closure detection has a crucial role in hydraulic fracturing operations, significant debate surrounds the various methodologies to determine its value. Several competing methodologies have been presented in the literature that sometimesyield significantly different estimates of closure pressure and time. The conventional techniques rely on assumptions that may be competing or even contradictory.The continuous wavelets transform technique is a data transform technique that convolves the pressure and/or temperature data using a short wavy signal called "wavelet". The wavelet transform provides a representation of the pressure signal by letting the translation and scale parameters of the wavelets vary continuously. That enables the analyst to find the details of the pressure data by observing the wavelet energy spectrum for the monitored signal (pressure and/or temperature) signal. In this case the event of contact between two fracture faces and complete fracture closure is clearly identified.As a part of The EGS Collab project, a series of fracture injection tests have been conducted to estimate the minimum principal stress with direct observation of well bore deformation using the SIMFIP tool (Step-Rate Injection Method for Fracture In-Situ Properties). The tool monitors the deformation using strain gauges as a fracture opens and closes during multiple tests. The publicly available data provide a great opportunity to experimentally calibrate the new technique for detecting the closure event using continuous wavelet transform. The effect of fracture closure events and fracture faces contact events detected using continuous wavelet transform were compared to the experimental measured deformation.The continuous wavelet transform technique for closure detection showed an agreement with the deformation measurement. The effect of the presence of natural fractures and complex fracture closure events were recognized using the continuous wavelet transform technique. The Contineous Wavelet Transform (CWT) is a global technique that can be applied to the pressure decline data without requiring further information about the reservoir geomechanical parameters or pumping data. The technique can be easily embedded in machine learning algorithms for hydraulic fracturing diagnostics.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3