An Equivalent Representation of Multiple Hydraulic Fractures with a Fewer Number of Fractures

Author:

Dontsov Egor1,Suarez-Rivera Roberto1

Affiliation:

1. W. D. Von Gonten Laboratories

Abstract

Summary Multiple hydraulic fractures are often generated simultaneously from a wellbore to increase efficiency of reservoir stimulation. Numerical modeling of such a system of fractures is computationally costly, especially if the goal is to simulate numerous stages, each containing multiple fractures, on different wells, which is the current trend in the petroleum industry. To address the challenge, this study defines a method and a workflow to represent the simultaneous propagation of multiple fractures with a reduced number of equivalent fractures that accurately describes the overall fracture geometry, the created surface area, the propped surface area, the fluid leakoff, and the resulting induced stresses, as resulting from the original configuration. A hybrid approach is used, in which a combination of physical modeling and data science is involved. We first develop a database of numerical solutions using a fully coupled hydraulic fracturing simulator. The equivalent fracture representation is quantified for each set of problem parameters presented in the database. Then, the results of the database solutions are used to tackle more general cases with field pumping schedules and rock properties. Several numerical examples are presented to validate and illustrate the developed concept.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3