Affiliation:
1. SINTEF
2. Schlumberger Information Solutions
Abstract
Summary
Multiscale methods have been developed as a robust alternative to upscaling and to accelerate reservoir simulation. In their basic setup, multiscale methods use both a restriction operator to construct a reduced system of flow equations that can be solved on a coarser grid and a prolongation operator to map pressure unknowns from the coarse grid back to the original simulation grid. When combined with a local smoother, this gives an iterative solver that can efficiently compute approximate pressures to within a prescribed accuracy and still provide mass-conservative fluxes. We present an adaptive and flexible framework for combining multiple sets of such multiscale approximations. Each multiscale approximation can target a certain scale; geological features such as faults, fractures, facies, or other geobodies; or a particular computational challenge such as propagating displacement and chemical fronts, wells being turned on or off, and others. Multiscale methods that fit the framework are characterized by three features. First, the prolongation and restriction operators are constructed by use of a nonoverlapping partition of the fine grid. Second, the prolongation operator is composed of a set of basis functions, each of which has compact support within a support region that contains a coarse gridblock. Finally, the basis functions form a partition of unity. These assumptions are quite general and encompass almost all existing multiscale (finite-volume) methods that rely on localized basis functions. The novelty of our framework is that it enables multiple pairs of prolongation and restriction operators—computed on different coarse grids and possibly also by different basis-function formulations—to be combined into one iterative procedure.
Through a series of numerical examples consisting of both idealized geology and flow physics as well as a geological model of a real asset, we demonstrate that the new iterative framework increases the accuracy and efficiency of the multiscale technology by improving the rate at which one converges the fine-scale residuals toward machine precision. In particular, we demonstrate how it is possible to combine multiscale prolongation operators that have different spatial resolution and that each individual operator can be designed to target, among others, challenging grids, including faults, pinchouts, and inactive cells; high-contrast fluvial sands; fractured carbonate reservoirs; and complex wells.
Publisher
Society of Petroleum Engineers (SPE)
Subject
Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献