Use of Multiple Multiscale Operators To Accelerate Simulation of Complex Geomodels

Author:

Lie K.-A.. -A.1,Møyner O..1,Natvig J. R.2

Affiliation:

1. SINTEF

2. Schlumberger Information Solutions

Abstract

Summary Multiscale methods have been developed as a robust alternative to upscaling and to accelerate reservoir simulation. In their basic setup, multiscale methods use both a restriction operator to construct a reduced system of flow equations that can be solved on a coarser grid and a prolongation operator to map pressure unknowns from the coarse grid back to the original simulation grid. When combined with a local smoother, this gives an iterative solver that can efficiently compute approximate pressures to within a prescribed accuracy and still provide mass-conservative fluxes. We present an adaptive and flexible framework for combining multiple sets of such multiscale approximations. Each multiscale approximation can target a certain scale; geological features such as faults, fractures, facies, or other geobodies; or a particular computational challenge such as propagating displacement and chemical fronts, wells being turned on or off, and others. Multiscale methods that fit the framework are characterized by three features. First, the prolongation and restriction operators are constructed by use of a nonoverlapping partition of the fine grid. Second, the prolongation operator is composed of a set of basis functions, each of which has compact support within a support region that contains a coarse gridblock. Finally, the basis functions form a partition of unity. These assumptions are quite general and encompass almost all existing multiscale (finite-volume) methods that rely on localized basis functions. The novelty of our framework is that it enables multiple pairs of prolongation and restriction operators—computed on different coarse grids and possibly also by different basis-function formulations—to be combined into one iterative procedure. Through a series of numerical examples consisting of both idealized geology and flow physics as well as a geological model of a real asset, we demonstrate that the new iterative framework increases the accuracy and efficiency of the multiscale technology by improving the rate at which one converges the fine-scale residuals toward machine precision. In particular, we demonstrate how it is possible to combine multiscale prolongation operators that have different spatial resolution and that each individual operator can be designed to target, among others, challenging grids, including faults, pinchouts, and inactive cells; high-contrast fluvial sands; fractured carbonate reservoirs; and complex wells.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3