Modeling Hydraulic Fractures in Finite Difference Simulators Using Amalgam LGR (Local Grid Refinement)

Author:

Abdelmoneim S. S.1,Rabee R..2,Shehata A. M.3,Aly A..4

Affiliation:

1. ENAP Sipetrol

2. Cairo University

3. Cairo University/TPS

4. TPS

Abstract

Abstract Hydraulic fracturing allows numerous, otherwise unproductive, low permeability hydrocarbon formations to be produced. The interactions between the fractures and the heterogeneous reservoir rock, however, are quite complex, which makes it quite difficult to model production from hydraulically-fractured systems. Various techniques have been applied in the simulation of hydraulically fractured wells using finite difference simulators most of these techniques are limited by the gnd dimensions and computing time and hardware restrictions. Most of the current analytical techniques assume a single rectangular shaped fracture m a single phase homogeneous reservoir, the fracture is limited to the block size and the fracture properties are adjusted using permeability multiplier. The current work demonstrates how to model these systems with a smaller grid block size which allows you to apply sensitivity to the fracture length and model the fracture with enhanced accuracy. It also allows you to study the effect of reservoir heterogeneity on the fractured well performance. It is proposed to apply amalgam LGR technique to decrease the grid size to the dimensions of the hydraulic fracture without dramatically increasing the number of gnd blocks which would cause a great increase in the computing time and the model size with no added value. This paper explains how the amalgam LGR is designed and compares between standard LGRs and the proposed design and a case study is presented from an anonymous field in Egypt to illustrate how to use this technique to model the hydraulically fractured well. The simulation model is matched to available production data by changing fracture lengths. Then the model is used to predict future response from the wells. The advantage of this technique is that it allows hydraulically fractured reservoirs to be modeled with less grid size which will lead to more realistic models and more accurate predictions: however, the most usefid application of this technique may come in the fracture modeling stage. With this tool, various fracture geometries and scenarios can be tested in the simulator, and the most economic scenarios selected and implemented. This will cause better fracture placement, and ultimately greater production.

Publisher

SPE

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3