Real-Time Monitoring of Fracture Dynamics with a Contrast Agent-Assisted Electromagnetic Method

Author:

Ahmadian Mohsen1,Haddad Mahdi1,Cui Liangze2,Kleinhammes Alfred3,Doyle Patrick3,Chen Jeffrey4,Pugh Trevor4,Liu Qing Huo2,Wu Yue3,Mohajeri Darwin1

Affiliation:

1. Bureau of Economic Geology, The University of Texas at Austin

2. Duke University

3. University of North Carolina

4. DIT, ESG Solutions

Abstract

AbstractIn collaboration with the Advanced Energy Consortium, our team has previously demonstrated that the placement of electrically active proppants (EAPs) in a hydraulic fracture surveyed by electromagnetic (EM) methods can enhance the imaging of the stimulated reservoir volumes during hydraulic fracturing. That work culminated in constructing a well-characterized EAP-filled fracture anomaly at the Devine field pilot site (DFPS). In subsequent laboratory studies, we observed that the electrical conductivity of our EAP correlates with changes in pressure, salinity, and flow. Thus, we postulated that the EAP could be used as an in-situ sensor for the remote monitoring of these changes in previously EAP-filled fractures. This paper presents our latest field data from the DFPS to demonstrate such correlations at an intermediate pilot scale.We conducted surface-based EM surveys during freshwater (200 ppm) and saltwater (2,500 ppm) slug injections while running surfaced-based EM surveys. Simultaneously, we measured the following: 1) bottomhole pressure and salinity in five monitoring wells; 2) injection rate using high-precision data loggers; 3) distributed acoustic sensors in four monitoring wells; and 4) tiltmeter data on the survey area.We demonstrated that injections into an EAP-filled fracture could be successfully coupled with real-time electric field measurements on the surface, leading to remote monitoring of dynamic changes within the EAP-filled fracture. Furthermore, by comparing the electrical field traces with the bottomhole pressure, flow rate, and salinity, we concluded that the observed electric field in our study is influenced by fracture dilation and flow rate. Salinity effect was observed when saltwater was injected. EM simulations solely based on assumptions of fracture conductivity changes during injection did not reproduce all of the measured electric field magnitudes. Preliminary estimates showed that including streaming potential in our geophysical model may be needed to reduce the simulation mismatch.The methods developed and demonstrated during this study will lead to a better understanding of the extent of fracture networks, formation stress states, fluid leakoff and invasion, characterizations of engineered fracture systems, and other applications where monitoring subsurface flow tracking is deemed important.

Publisher

SPE

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3