Experimental Study on Dynamic Barite Sag and Effects of Inclination and Pipe Rotation

Author:

Fakoya Muili F.1ORCID,Ahmed Ramadan2ORCID

Affiliation:

1. The University of Oklahoma

2. The University of Oklahoma (Corresponding author)

Abstract

Summary Barite sag causes pressure fluctuations in the wellbore, which is undesirable. These problems usually occur with oil-based muds (OBMs; invert emulsion muds) and are associated with fluid properties and operation parameters. Drilling issues related to this undesirable phenomenon include wellbore instability, lost circulation, and stuck pipes. As barite sagging is a complex phenomenon, the mechanisms that cause and aggravate it still need to be fully understood to mitigate these problems. This study examines barite sagging in the wellbore with inner pipe rotation to understand the process and develop prevention strategies. Thus, a flow loop study with OBM is conducted in a concentric annular test section with varying inner pipe rotation and inclination angles. The tests were performed at an elevated temperature (49°C) to simulate borehole conditions. By measuring the pressure profile in a mud sample trapped in the test section, barite sagging was evaluated. Using the data, we calculated the density difference between the top and bottom sections of the column. The novelty of the work lies in continuous monitoring of the density profile of the mud column, which is sheared between two coaxial cylinders to simulate drillstring rotation in the wellbore, and utilizing the data for evaluating barite sag. The results show the evolution of the pressure profile with time, indicating the sagging of barite particles at the bottom of the test section. Due to barite sagging, the density of the top portion of the mud column decreased over time, while the density of the bottom part increased. The lateral sedimentation of barite particles toward the annulus outer wall enhances barite sag in inclined configurations. The sedimentation creates two suspension layers with different densities, leading to secondary flow, which enhances sagging. Hence, the primary factor driving barite sagging is inclination. An increase in inclination angle from 0° to 50° resulted in a significant (more than twofold) increase in mud density difference. Also, the rotation of the pipe delayed sagging during the early phases of the testing process (less than 20 minutes). However, it did not have much effect as the sagging progressed, resulting in approximately the same density difference in both cases (i.e., with and without rotation).

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3