The Application of a Fiberglass Liner in Well Tubing as Cost Effective Material Option in High Velocity Production Wells

Author:

Repetto Carmen1,Gorini Simone1,Nutricato Giacomo Andrea1,Torri Lucia1,Cavassi Paolo1,Zucchetto Maria Ornella1,Guglielmo Carmelo1,Gravante Elpidio1,McIntosh Neil2,Balistrieri Roberto3

Affiliation:

1. Eni

2. Maxtube Limited

3. Mepeco

Abstract

Abstract The composite liner is made of a Glassfibre Reinforced Epoxy (GRE) resin, inserted in Carbon Steel tubing and it can be used in both production and water injection wells. Different laboratory tests performed either by manufacturers and by operators, have been carried out in order to confirm and verify the material characteristics and reliability. In particular, Eni in 2009 tested GRE in sour environment with CO2 and H2S to investigate the capability and service limits of the resin liner at different temperatures. According to the positive results of the tests, Eni has firstly applied GRE in 2005 in Tunisia where it was successful in reducing onshore workover costs and extending the life of Carbon Steel tubing in oil producer wells with high CO2 and water cut. The latest application was in Norway where it has been installed on water injector offshore wells, where, due to high corrosiveness of the injection fluid (raw seawater with antifouling chlorination), the liner was selected as cost effective alternative to high alloyed materials. More recently, Eni was involved in particularly challenging deepwater development projects with highly productive gas wells in sour and harsh environment. Typically, these applications require high grade Corrosion Resistant Alloys (CRA) production tubing with an important impact on the completion costs and operative run in hole issues. Following the positive experiences gained in the last 15 years in the application of glassfibre liner, it was evaluated the possibility to deploy the material as a corrosion barrier in well production tubings under more critical conditions. Eni decided to perform some additional laboratory tests in collaboration with Milan Polytechnic. Direct impact test and straight pipe test were performed in order to characterize the erosion behaviour of GRE composite material, supplied by two different manufacturers, and simulating the case of wells with high erosion rate risk. The results demonstrated GRE to have a good resistance to the solid particles erosion in comparison to very similar tests on Inconel Nickel Alloy material and confirmed the potential use of GRE as a corrosion resistance material when combined with Carbon Steel tubulars as an alternative to the usual high CRA materials in producer wells. This paper will present the characteristics of the technology, the laboratory tests performed with their results and the acceptable range of field conditions. Additionally, the paper will provide Eni field experiences, including feedback, lessons learned and economic evaluations.

Publisher

SPE

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3