Recovery Control - Closing the Loop in Automated Control Systems

Author:

Auld S.1,Hopwood F.1,Taylor W.1,Kern S.1

Affiliation:

1. Helmerich & Payne, Tulsa, Oklahoma, USA

Abstract

Abstract Drilling process automation has been a trending topic within the technical community, most recently discussed in SPE-212565-MS (Cayeux et al. 2023). Recovery control - specifically in the case of motor stalls - is not only integral to consistently completing automation control system execution, but also building confidence for the control system users and ultimate automation benefactors. Predicting, preventing, detecting, mitigating, and recovering motor stalls through automated recovery control solves an issue affecting most operators, contributing to additional bottom-hole assembly (BHA) damage and unplanned trips. The recovery control system was designed with six major process control interfaces, two of which occur during on-bottom drilling: drilling while rotating and drilling while sliding. Each control interface is a means by which an external system can control the rig tools in a coordinated fashion, managing what control is currently active and ensuring the driller can ultimately assume control at any given time. The recovery control is customized and preconfigured with an observation window to execute the recovery process once the stall criteria has been breached while on-bottom drilling, sliding or rotating. The result is mitigated motor stalls that are consistently managed with a configurable automation system, less BHA damage, and no motor stall related unplanned trips - displaying both time and cost value. After two years of testing the recovery control system internally, there were no undetected stalls, no false detections, and no unplanned trips due to motor stall, displaying detailed accuracy. The recovery control complements the process control, limit control, and manual control components of the automation control system to drill a stand effectively and consistently. A complete and effective automation control system gives time back to the rig crew and allows for leadership development opportunities. The reliability gained through recovery control, faster than manual attempts, allows the driller to focus more time on safety and training the rig crew instead of monitoring differential pressure in the hopes of manually preventing a motor stall. In nearly all cases, stalls were detected faster with the automatic recovery control system compared to manual detection by the driller. Drillers cannot be expected to pay attention to the hundreds of potential drilling problems - a control system can. There are systems claiming to identify motor stalls, but this recovery control is the only technology to date that actively detects and recovers the system from the stall.

Publisher

SPE

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3