Shale Descriptive Analytics; Which Parameters are Controlling Production in Shale

Author:

Mohaghegh Shahab D.1

Affiliation:

1. West Virginia University & Intelligent Solutions, Inc.

Abstract

Abstract Descriptive Analytics is the first step of a three-step data-driven analytics workflow used for managing and optimizing completion, production and recovery of shale wells. The comprehensive data-driven analytics workflow for the unconventional resources is called Shale Analytics (Mohaghegh 2017). The key behind Shale Analytics is the incorporation of all field measurements that contribute to the productivity of shale wells. There are workflows in the market that claim to be data analytics related but do not make use of all the available field measurements when performing their analyses. These workflows are mainly based on traditional statistical algorithms rather than Artificial Intelligence and Machine Learning. Such approaches represent different versions of Decline Curve Analysis. Shale Descriptive Analytics takes into account seven categories of field measurements; (i) well construction and trajectory, (ii) well spacing and stacking, (iii) reservoir characteristics, (iv) completion design, (v) hydraulic fracturing implementation, (vi) operational constraints, and (vii) well productivity. Each of the above categories of field measurements include several parameters. Shale Descriptive Analytics provides two types of insight on the contribution of all the field measurements to well productivity. The first type of insight compares and quantifies the contribution of the different categories of field measurements to well productivity. The second, more detail type of insight compares and quantifies the contribution of each of the parameters of the first six categories to the final category that is well productivity and then compares all the parameters to one another. The Shale Descriptive Analytics presented in this article demonstrate the results of more than 800 shale wells in one of the most productive shale plays in Texas. Two conclusions have been achieved as the result of this study. (a) In the early life of a shale asset, when the wells are NOT too close to one another (when Frac-Hit is not an issue), using well productivity indices (such as initial production, initial decline rate, first 30, 60, 90, 120, 180 and 365 days of cumulative production, etc.) can provide realistic insight for completion optimization, well productivity and recovery. (b) Once the number of wells in a given asset increases, resulting in the reduction of the distances between parent and child wells (Frac-Hit impacts production and recovery), well productivity indices will no longer be able to provide the required insight for modeling and analysis of field measurements. This is because as the number of wells increases in a given shale asset, the fracture-driven interaction between wells (also known as Frac-Hit) takes over the overall productivity of all the wells in the field. Frac-Hit not only negatively influences parent and child wells productivity and recovery, it completely undermines all the existing techniques (traditional techniques such as RTA and numerical simulation as well as all the existing techniques based on Data Analytics) for completion and production optimization of shale wells. At the conclusion of this article, a new approach to overcome this specific problem is introduced.

Publisher

SPE

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3