Effect of Low Salinity Waterflooding on the Chemistry of the Produced Crude Oil

Author:

Collins I. R.1,Couves J. W.1,Hodges M..1,McBride E. K.1,Pedersen C. S.1,Salino P. A.1,Webb K. J.1,Wicking C..2,Zeng H..3

Affiliation:

1. BP Exploration Operating Co. Ltd.

2. BP Oil UK

3. BP North America

Abstract

Abstract Injecting low salinity water into a petroleum reservoir to improve oil recovery has been studied extensively over recent years as a low cost enhanced oil recovery (EOR) process. Extensive chemical analyses have been performed on the effluent water from low salinity waterflood experiments which reveal the extent of interaction between the injected brine, the oil and the rock matrix. However, there has been little work reported on the impact of the injected fluid composition on the nature and composition of the oil recovered. This paper details an investigation on how the waterflood medium affects the chemistry of the produced oil, which is important for understanding the mechanism by which the additional oil is released. Produced oil samples were analyzed using High Resolution Mass Spectrometry (HRMS) which essentially measures the mass of individual molecular species very precisely, which makes it possible to assign a unique elemental composition (e.g. carbon, hydrogen, oxygen, nitrogen and sulfur content) to each mass. Additionally, by careful control of the ionization procedure, it was possible to identify acidic and basic polar species, as well as neutral aromatic hydrocarbons. The data indicates that the composition of the produced oil changes during the reduced salinity waterflood, with an increase in the CxHyO2 species occurring. These molecular species, compared to the secondary high salinity flood, are released as the tertiary low salinity injection water passes through the core; they then decline towards the end of the waterflood. In contrast, there appears to be little change in aromaticity, sulfur and nitrogen containing species during the flood. The fact that the produced oil is enriched predominantly with CxHyO2 species is consistent with the multiple ion exchange and local pH rise mechanisms proposed previously.

Publisher

SPE

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3