Experimental Study of Asphaltene Precipitation and Deposition During Immiscible CO2 - EOR Process

Author:

Espinoza Mejia Julia Emilia1,Li Xiaoli1,Zheng Ruyi2

Affiliation:

1. The University of Kansas

2. Cornell University

Abstract

Abstract The Enhanced Oil Recovery (EOR) assisted with CO2 injections has been widely addressed. However, limited experimental work has been done for studying the asphaltene precipitation arising during the immiscible CO2 injection processes. This investigation presents experimental phase behavior analyses of asphaltenes instability, determination of asphaltene onset pressures (AOP), characterization, and description of asphaltene precipitation and deposition particles under different reservoir conditions. An advanced fully visual Pressure-Volume-Temperature (PVT) instrument and a Solid Detection System (SDS) are utilized to perform all the measurements in this work. Saturation pressures are measured for the gas and crude oil mixtures with different compositions under different reservoir temperatures in the PVT cell. Changes in pressure, temperature, and volume at each equilibrium state are recorded. The same mixture composition is charged into the SDS. The AOP is then determined by reducing the pressure in the SDS. The upper asphaltene onset pressure (UAOP) is found to increase with the CO2 concentration in the system from 25 to 35 mol% CO2. For 45 mol% CO2, the UAOP is found to be lower than UAOP at 25 mol% CO2. In contrast, the lower asphaltene onset pressure (LAOP) is found to increase with CO2 concentration in all cases. The reversible process of asphaltene precipitation during the de-pressurization process at constant temperature is corroborated with the experiment at 60, 90, and 120 °C for the composition of 25 mol% of CO2 and at 90 and 120 °C for the composition of 35 mol% of CO2. The rest of the cases presented asphaltene deposition, which is considered an irreversible process because the asphaltene particles cannot be re-peptized into the liquid phase by the effect of pressure. By contrast, the complete re-peptization of asphaltenes during the re-pressurization is more effective at lower gas injection fractions (25, 35 mol% CO2) and higher temperatures (90, 120 °C). The maximum quantity and size of asphaltene particles are found near the bubble point pressure for all cases. The asphaltenes particles do not have a specific shape, and their colors vary from brown to black. The amount of asphaltene precipitation increase with the gas fraction by the effect of the micro-aggregates-clusters formation being able to reach the stage of aging or irreversible asphaltene deposition. Conversely, lower asphaltene precipitation is shown with the increment of temperature for 25 mol% CO2. This experimental work attempts to analyze the asphaltene precipitation phase behavior and particles observation relationship when CO2 is injected at different gas proportions and under different reservoir temperatures. The results from this effort provide significant support to the areas of asphaltene phase behavior characterization and formation damage control.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3