A Proper Data Comparison for Seismic History Matching Processes

Author:

Davolio Alessandra1,Schiozer Denis José1

Affiliation:

1. University of Campinas

Abstract

Abstract Seismic data usually has lower vertical resolution than reservoir simulation models so it is a common practice to generate maps of 4D attributes to be used as the observed data to calibrate models. In such a case, simulation results are converted to seismic attributes and a map is generated by averaging the corresponding layers. Although this seems to be a fair practice, here we show that this procedure can present some drawbacks and propose a new approach to ensure a proper data comparison. The first step of the proposed procedure follows the traditional sequence where seismic attributes are generated by running a petro-elastic model (PEM) with reservoir simulation data, at the simulation scale. Then, instead of averaging the simulation layers, we propose to resample the simulation grid to a seismic grid and filter the seismic impedances to the seismic frequency. Lastly, we extract the map from the regular grid to be compared with the observed 4D seismic. This procedure is performed in the depth domain and allows a straight and fair comparison of the two dataset. A synthetic dataset based on a Brazilian field produced through water injection is used to validate this procedure. This dataset is composed by a synthetic 4D seismic data (observed data) generated by a consistent seismic modeling and inversion and a set of reservoir simulation models (to be matched). We computed seismic impedance for each simulation model by applying a PEM and two maps were generated for each model: (1) by averaging impedance values throughout the corresponding layers and (2) by applying the proposed procedure. When these maps are subtracted from the observed data (error maps), as would happen in a quantitative seismic history matching, we note a relevant differences. In the dataset used, we observed that if the vertical resolution issue is not considered (Case 1) the error map presents a strong bias that would erroneously force a decrease on the water saturation to match the observed data in a seismic history matching. While the map generated in Case 2 presents the errors better balanced and related to actual water movement differences rather than being a consequence of scale and resolution issues. The novelty of this work is a quick way to bring simulation data to seismic resolution without going through all seismic modeling process ensuring a proper data comparison, which can be promptly added in seismic history matching process.

Publisher

SPE

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Substituting petro-elastic model with a new proxy to assimilate time-lapse seismic data considering model errors;Journal of Petroleum Science and Engineering;2022-03

2. Assimilating time-lapse seismic data in the presence of significant spatially correlated model errors;Journal of Petroleum Science and Engineering;2021-12

3. 4D seismic history matching;Journal of Petroleum Science and Engineering;2021-12

4. Seismic modeling using dual-reservoir and geophysical models;First International Meeting for Applied Geoscience & Energy Expanded Abstracts;2021-09-01

5. Using petro-elastic proxy model to integrate 4D seismic in ensemble based data assimilation;Journal of Petroleum Science and Engineering;2020-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3