Analysis of Casing String Running Characteristics in Negative-Displacement Horizontal Wells

Author:

Ding Liangliang1ORCID,Zhou Lan2ORCID,Han Chuanjun1ORCID,Sun Qiaolei3ORCID,Wang Kai1ORCID

Affiliation:

1. School of Mechatronic Engineering, Southwest Petroleum University

2. School of Mechatronic Engineering, Southwest Petroleum University (Corresponding author)

3. School of Mechanical Engineering, Yangtze University

Abstract

Summary By creating a reverse deflection, negative-displacement horizontal well technology can successfully address the issue of construction challenges brought on by too little displacement in front of the horizontal well target. However, conventional horizontal well casing string running models are unsuitable for negative-displacement horizontal wells. This is because conventional horizontal well models assume that the casing string is in contact with the lower side of the borehole, which is inconsistent with the actual situation in negative-displacement horizontal wells. In this study, we examine the effects of fluid viscous resistance and internal and external fluid interaction forces on the running of the casing string using the Gaussian method and the complementary surface equivalence method. Based on the bending beam theory, we establish a deflection model to examine the interaction between the casing string and the borehole wall in the bending section. The friction and hookload calculation models of each well section and the strength check models are also established. The calculation results show that, according to the aforementioned model, there is an average error of 7.5% between the measured data and the calculated frictional force of the H1 and H2 negative-displacement horizontal wells. This error is within the reasonable range of field application and attests to the validity of the theoretical model. Finally, we study the influence of running factors on running ability and strength of casing string using the control variable method. The results indicate that the weight of the casing string is positively correlated with the variation law of the running ability of the casing string, the maximum offset distance and the length of the horizontal section are negatively correlated with the running ability of the casing string, and the borehole curvature is positively correlated with the variation law of the connection stress of the internal and external threads of the casing string. Therefore, in the process of running the casing string in negative-displacement horizontal wells, using heavier casing string and reducing the maximum offset distance and horizontal section length can improve the running ability of the casing string.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Mechanical Engineering,Energy Engineering and Power Technology

Reference20 articles.

1. Experimental Investigation of Coiled Tubing Buckling Effect on Annular Frictional Pressure Losses;Abbas,2020

2. Improving Torque and Drag Prediction Using the Advanced Spline Curves Borehole Trajectory;Abughaban,2017

3. Buckling of Buoyancy-Assisted Tubulars;Arslan;SPE Drilling & Compl,2014

4. API Tubular Ovality and Stresses in Horizontal Wells With a Finite-Element Method;Akgun;SPE Drilling & Compl,1994

5. Modelling the Effect of Injection System Compressibility And Viscous Fluid Flow On Hydraulic Fracture Breakdown Pressure;Bunger,2010

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3