Surfactant Huff-n-Puff Application Potentials for Unconventional Reservoirs

Author:

Shuler Patrick J.1,Lu Zayne1,Ma Qisheng1,Tang Yongchun2

Affiliation:

1. ChemEOR Inc.

2. Power Environmental Energy Research Institute

Abstract

Abstract Improved Oil Reocvery (IOR) technologies may offer a new strategy to improve the initial production (IP) and slow the production decline from oil-rich shale formations. Early implementation of chemical IOR technologies largely have been overlooked during strategic planning of unconventional reservoirs. The purpose of this study is to improve understanding of the dynamic processes of oil displacement by surfactants and to investigate mechanism of how surfactants extract oil. A successful conventional surfactant "huff-n-puff' treatment is described with a focus on any relationship between increased oil production and the surfactant soaking period. Surfactant chemistry has been considered as one of a few ultimate IOR solutions. Despite being well proven as effective chemicals to recover oil from convenetional reservoris, surfactants commonly are used in hydraulic fracturing of unconventional reservoris are just to promote flow back of the injected aqueous fluid over a relatively short time frame. In order to better understand the functionality of surfactants for obtaining favorable oil interaction with both the stimulation fluid and rock matrix, a specifically-designed "oil-on-a-plate" (OOAP) setup and procedure is employed to examine the penetration of surfactant into the oil-film that is adhereing to a solid surface. In addition to the well-recognized spontaneous imbibition and surface wettability alternation processes, surfactant also can gradually penetrate and mobilize oil droplets, resulting in improved oil recovert. If properly selected and designed, the surfactant additives in stimulation/fracturing fluids could have multi-functions towards improving both IP and the longer-term oil production. Besides serving as a demulsifier and flowback enhancer to boost IP, the surfactants could continuously lift-up and mobilize adsorbed oil to increase recoverable oil in place.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3