Fluid Sampling in Tight Unconventionals

Author:

Carlsen Mathias Lia1,Whitson Curtis Hays2,Alavian Ahmad1,Martinsen Sissel Øksnevad1,Mydland Stian2,Singh Kameshwar1,Younus Bilal1,Yusra Ilina1

Affiliation:

1. Whitson AS

2. Whitson AS, NTNU

Abstract

Abstract In this paper we emphasize the duality of fluid sampling: (1) fluid characterization; to collect samples and measure pressure/volume/temperature (PVT) data that can be used to build and tune an equation of state (EOS) model, and (2) fluid initialization; to collect samples to estimate in-situ fluid compositions. It is hard, if not impossible, to obtain truly in-situ representative fluid samples in multi-fractured horizontal wells (MFHW). This paper explains why fluids measured in the lab may be significantly different from in-situ representative fluid samples, even if the fluid samples are collected shortly after the well is put online. The paper also suggests that practically all samples, in-situ representative or not, can and should be used to build a reliable EOS model. To make a comprehensive assessment of fluid sampling in tight unconventionals, reservoir fluids ranging from black oils to gas condensates have been studied. For a wide range of fluid systems, a compositional reservoir simulator has been used to assess two main scenarios: (1) an initially undersaturated (single-phase) fluid system, and (2) initially saturated (two-phase) fluid system. To quantify how collected surface samples change with time, three properties are studied as functions of time: (1) saturation pressure and type (dewpoint | bubblepoint), (2) producing gas/oil ratio (GOR), and (3) stock-tank oil (STO) API. Observations of how these three properties change with time is used to help explain why elevated saturation pressures, greater than the initial reservoir pressure, often can be observed. Rapid decline of the flowing bottomhole pressure (BHP | pwf), together with shut-in periods, makes it difficult to obtain in-situ representative samples in MFHW. For slightly undersaturated reservoirs, and saturated reservoirs, it may be impossible to obtain in-situ representative fluid samples because of the near-wellbore multiphase behavior. However, samples which are not in-situ representative can still be used to estimate original in-situ fluids using equilibrium contact mixing (ECM) procedures. In this paper, we propose two ECM methods that can either be carried out by physical measurements in a PVT lab or can be computed with a properly tuned EOS model.

Publisher

SPE

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3