Multilateral Challenges and Solutions for Installations in the Middle East

Author:

Kelsey Matthew1,Fanchin Thomas1,Rondon Leonque1

Affiliation:

1. Halliburton

Abstract

Abstract Multilateral technology can provide a higher recovery factor by achieving a longer field life supported by the cumulative production of the multiple laterals, turning otherwise unviable reservoirs into economically sound targets, keeping construction costs down and minimizing risk. This paper will focus on TAML 5 systems that meet well integrity requirements by isolating the junction from reservoir pressure or stimulations and provide independent accessibility on both laterals during the life of the well. This capability eliminates the requirement to pull the completion should access be required to the lateral for cleaning, stimulation, zonal isolation, or data acquisition. Using this technology also leads to a reduction in the cost of well construction as well as intervention. This paper discusses challenges faced to provide accessibility to both laterals from surface without using a re-entry deflector as well as solutions including segregated and commingled flow installations. Discussion will also cover completion designs that tie new laterals into existing production casing. Case studies will include a discussion of workover operations, isolation methods, and lateral creation systems. In the Middle East, older TAML 4 wells have been converted to TAML 5 in order to prevent detected gas migrating into the mainbore at the junction. This conversion of a cemented junction well has enabled production to resume on the wells. This application has also been applied to the installation of new wells in the region. New and re-entry wells were completed with intelligent upper completions to enable flow control of each lateral. The paper focuses on the challenges, solutions, and successful case studies of multilateral wells constructed in the Middle East. The paper also provides insight as to methodology for continually improving reliability of multilateral installations to maximize efficiencies.

Publisher

SPE

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3